
Contents

List of Figures v

List of Tables ix

List of Arduino Code xi

List of Scilab Code xiii

List of Acronyms xv

1 Introduction 1

2 Hardware Environment 3
2.1 Microcontroller . 3

2.1.1 Organization of a Microcontroller 3
2.1.2 Microcontroller Peripherals 5

2.2 Open Source Hardware (OSHW) . 7
2.3 Arduino . 8

2.3.1 Brief History . 8
2.3.2 Arduino Uno Board . 9
2.3.3 Popular Arduino Projects . 9

2.4 Shield . 11
2.5 Experimental Test Bed . 12

3 Software Environment 17
3.1 Arduino IDE . 17

3.1.1 Downloading and installing on Windows 18
3.1.2 Downloading and installing on GNU/Linux Ubuntu 18
3.1.3 Arduino Development Environment 21
3.1.4 Testing Arduino with a sample program 23

ii Contents

3.2 Scilab . 24
3.2.1 Downloading and installing Scilab 24
3.2.2 Scilab Arduino toolbox . 25
3.2.3 Identifying Arduino communication port number 27
3.2.4 Testing Scilab-Arduino toolbox 29

3.3 Xcos . 33
3.3.1 Downloading, installing and testing 33
3.3.2 Use case . 35
3.3.3 Xcos-Arduino . 38

3.4 Arduino Code . 40
3.5 Scilab Code . 40

4 Interfacing a Light Emitting Diode 41
4.1 Preliminaries . 41
4.2 Lighting the LED from the Arduino IDE 43
4.3 Lighting the LED from Scilab Scripts 45
4.4 Lighting the LED from Scilab Xcos 47
4.5 Arduino Code . 52
4.6 Scilab Code . 53

5 Interfacing a Pushbutton 55
5.1 Preliminaries . 55
5.2 Reading the Pushbutton status from the Arduino IDE 55
5.3 Reading the Pushbutton status from Scilab Scripts 57
5.4 Accessing the Pushbutton from Xcos 58
5.5 Arduino Code . 60
5.6 Scilab Code . 61

6 Interfacing a Light Dependent Resistor 63
6.1 Preliminaries . 63
6.2 Arduino Experiments . 65
6.3 Scilab Experiments . 66
6.4 LDR experiments through Xcos . 67
6.5 Arduino Code . 68
6.6 Scilab Code . 70

7 Interfacing a DC motor 73
7.1 Preliminaries . 73
7.2 Controlling the DC motor from Arduino 75
7.3 Controlling the DC motor from Scilab 77

Contents iii

7.3.1 Initialization . 77
7.3.2 Rotation for a specified time 77
7.3.3 Using the capabilities of Scilab 79

7.4 Driving the DC motor from Xcos . 79
7.5 Arduino Code . 83
7.6 Scilab Code . 85

8 Interfacing a Potentiometer 87
8.1 Preliminaries . 87
8.2 Reading the potentiometer from the Arduino IDE 88
8.3 Reading the potentiometer from Scilab Script 89
8.4 Reading the potentiometer from Scilab Xcos 90
8.5 Exercise . 92
8.6 Arduino Code . 92
8.7 Scilab Code . 93

9 Interfacing a Thermistor 95
9.1 Preliminaries . 95
9.2 Reading thermistor from Arduino IDE 96
9.3 Reading thermistor from Scilab scripts 98
9.4 Reading thermistor from Xcos . 99
9.5 Arduino Code . 103
9.6 Scilab Code . 104

10 Interfacing a Servomotor 105
10.1 Preliminaries . 105
10.2 Control through Arduino IDE . 106
10.3 Control through Scilab Scripts . 107
10.4 Control through Xcos code . 108
10.5 Arduino Code . 113
10.6 Scilab Code . 115

11 Implementation of Modbus Protocol 117
11.1 Preliminaries . 117
11.2 Objective . 122
11.3 Energy Meter set up for Modbus protocol with Arduino Uno 122
11.4 Software . 123
11.5 Output . 124
11.6 Reading Parameters from Xcos . 126

11.6.1 Troubleshooting . 126

iv Contents

11.7 Arduino Code . 131
11.8 Scilab Code . 131

References 133

List of Figures

2.1 Functional block diagram of a microcontroller 4
2.2 ADC resolution . 6
2.3 The logo of Open Source Hardware 7
2.4 Arduino Uno Board . 9
2.5 Arduino Mega Board . 10
2.6 LilyPad Arduino Board . 11
2.7 Arduino Phone . 11
2.8 3D printer . 12
2.9 PCB image of the shield . 13
2.10 Pictorial representation of the schematic of the shield 14
2.11 PCB of the shield is this wording ok? 15
2.12 Picture of the shield with all components 15

3.1 Windows device manager . 19
3.2 Windows update driver option . 20
3.3 Confirmation for executing Arduino script 21
3.4 Arduino IDE . 21
3.5 Linux terminal to launch Scilab . 25
3.6 Changing scilab directory . 26
3.7 Browsing toolbox directory . 27
3.8 Output of builder.sce . 28
3.9 Output of loader.sce . 29
3.10 Device Manager in windows . 30
3.11 COM port properties window . 31
3.12 Port number on Linux terminal . 31
3.13 Scilab test code output . 32
3.14 Arduino toolbox functions used in this book 33
3.15 Sine generator in palette browser . 34
3.16 CSCOPE block in xcos . 35

v

vi List of Figures

3.17 CLOCK_c block in xcos . 36
3.18 Sine generator in Xcos . 36
3.19 Sine generator Xcos output . 37
3.20 CSCOPE configuration window . 37
3.21 Simulation setup window . 38
3.22 Palette browser showing Arduino blocks 39
3.23 Xcos block help . 39

4.1 Light Emitting Diode . 41
4.2 Internal connection diagram for LED on the shield 42
4.3 Connecting Arduino and Shield . 42
4.4 LED experiments directly on Arduino Uno board, without the shield 45
4.5 Turning the blue LED on through Xcos 47
4.6 Turning the blue LED on through Xcos for two seconds 48
4.7 Turning the blue and red LEDs on through Xcos and turning them

off one by one . 49
4.8 Blinking the green LED every second through Xcos 51

5.1 Connection Diagram . 56
5.2 Printing the push button status on the display block 58
5.3 Turning the LED on or off, depending on the pushbutton 59

6.1 Light Dependent Resistor . 64
6.2 Internal connection diagram for the LDR on the shield 64
6.3 Xcos diagram to read LDR values . 67
6.4 Xcos diagram to read the value of the LDR, which is used to turn the

blue LED on or off . 69

7.1 L293D motor driver board . 74
7.2 A schematic of DC motor connections 75
7.3 How to connect the DC motor to the Arduino Uno board 75
7.4 Control of DC motor for a specified time from Xcos 80
7.5 Xcos control of the DC motor in forward and reverse directions . . . 81
7.6 Xcos control of the DC motor in forward and reverse directions . . . 82

8.1 Potentiometer’s schematic on the shield 88
8.2 Turning LEDs on through Xcos depending on the potentiometer thresh-

old . 90

9.1 Pictorial and symbolic representation of a thermistor 96
9.2 Thermistor and buzzer connection diagrams 96

List of Figures vii

9.3 Xcos diagram to read thermistor values 100
9.4 Output of Xcos diagram to read thermistor values 101
9.5 Xcos diagram to read the value of thermistor, which is used to turn

the buzzer on or off . 101
9.6 Output of Xcos diagram to switch buzzer through thermistor values 102

10.1 Rotating the servomotor by a fixed angle 109
10.2 Rotating the servomotor forward and then reverse 110
10.3 Rotating the servomotor in increments of 20◦ 111
10.4 Rotating the servomotor as suggested by the potentiometer 112

11.1 Block diagram representation of the Protocol 118
11.2 Master-Slave Query-Response Cycle 118
11.3 Pins in RS485 module . 119
11.4 MODBUS Set Up for Energy Meter 123
11.5 Block Diagram for Energy Meter Setup 124
11.6 Flowchart of Arduino firmware . 125
11.7 Flow Chart of the Modbus Energy Meter Implementation 126
11.8 Single Phase Current Output on Scilab Console 127
11.9 Single Phase Current Output on Energy Meter 127
11.10Single Phase Voltage Output on Scilab Console 128
11.11Single Phase Voltage Output on Energy Meter 128
11.12Single Phase Voltage Output on Scilab Console 129
11.13Single Phase Voltage Output on Energy Meter 129
11.14Xcos diagram to read Energy Meter values 130

viii List of Figures

List of Tables

2.1 Arduino Uno hardware specifications 10
2.2 Values of components used in the shield 16
2.3 Information on sensors and pin numbers 16

4.1 Parameters to light the blue LED in Xcos 48
4.2 Parameters to light the blue LED in Xcos for two seconds 49
4.3 Parameters to turn the blue and red LEDs on and then turn them off

one by one . 50
4.4 Parameters to make the green LED blink every second 50

5.1 Parameters to print the push button status on the display block . . . 59
5.2 Xcos parameters to turn the LED on through the pushbutton 60

6.1 Xcos parameters to read LDR . 68
6.2 Xcos parameters to read LDR and regulate blue LED 70

7.1 A numbering convention used in the DC motor breakout board . . . 78
7.2 Parameters for DC motor initialization 78
7.3 Xcos parameters to drive the DC motor for a specified time 81
7.4 Xcos parameters to drive the DC motor in forward and reverse direc-

tions . 82
7.5 Xcos parameters to drive the DC motor in a loop 83

8.1 Xcos parameters to turn on different LEDs depending on the poten-
tiometer value . 91

9.1 Xcos parameters to read thermistor 100
9.2 Xcos parameters to read thermistor and switch the buzzer 102

10.1 Connecting a typical servomotor to Arduino Uno board 106
10.2 Parameters to rotate the servomotor by 30◦ 109

ix

x List of Tables

10.3 Parameters to rotate the servomotor forward and reverse 111
10.4 Parameters to make the servomotor to sweep the entire range in in-

crements . 112
10.5 Parameters to rotate the servomotor based on the input from the

potentiometer . 113

11.1 Interpretation of a request packet . 120
11.2 Interpretation of a response packet 120
11.3 Hexadecimal to Decimal . 121
11.4 Single and Double Precision Representation 121
11.5 Xcos parameters to read Energy Meter 130

List of Arduino Code

3.1 First 10 lines of the Arduino firmware 40

4.1 Turning on the blue LED . 52
4.2 Turning on the blue LED and turning it off after two seconds . . . 52
4.3 Turning on blue and red LEDs for 5 seconds and then turning them

off one by one . 52
4.4 Blinking the green LED . 52

5.1 Read the status of the pushbutton and displaying on the serial mon-
itor . 60

5.2 Turning the LED on or off depending on the pushbutton 61

6.1 Read and display the LDR values 68
6.2 Turning the blue LED on and off 69

7.1 Rotating the DC motor . 83
7.2 Rotating the DC motor in both directions 84
7.3 Rotating the DC motor in both directions in a loop 84

8.1 Turning on LEDs depending on the potentiometer threshold 92

9.1 Read and display the thermistor values 103
9.2 Turning the buzzer on and off using thermistor values 103

10.1 Rotating the servomotor to a specified degree 113
10.2 Rotating the servomotor to a specified degree and reversing 113
10.3 Rotating the servomotor in increments 114
10.4 Rotating the servomotor through the potentiometer 114

11.1 First 10 lines of the firmware for Modbus Energy Meter experiment 131

xi

xii List of Arduino Code

List of Scilab Code

3.1 A code to check whether the firmware is properly installed or not . 40

4.1 Turning on the LED . 53
4.2 Turning on the blue LED and turning it off after two seconds . . . 53
4.3 Turning on blue and red LEDs for 5 seconds and then turning them

off one by one . 53
4.4 Blinking the green LED . 54

5.1 Read the status of the pushbutton and displaying on the serial mon-
itor . 61

5.2 Turning the LED on or off depending on the pushbutton 61

6.1 Read and display the LDR values 70
6.2 Turning the blue LED on and off 71

7.1 Rotating the DC motor . 85
7.2 Rotating the DC motor in both directions 85
7.3 Rotating the DC motor in both directions in a loop 85

8.1 Turning on LEDs depending on the potentiometer threshold 93

9.1 Read and display the thermistor values 104
9.2 Turning the buzzer on and off using thermistor values 104

10.1 Rotating the servomotor to a specified degree 115
10.2 Rotating the servomotor to a specified degree and reversing 115
10.3 Rotating the servomotor in steps of 20◦ 115
10.4 Rotating the servomotor to a degree specified by the potentiometer 115

11.1 First 10 lines of the function for scifunc block 131
11.2 First 10 lines of the code for Single Phase Current Output 131

xiii

xiv List of Scilab Code

11.3 First 10 lines of the code for Single Phase Voltage Output 132
11.4 First 10 lines of the code for Single Phase Active Power Output . . 132

List of Acronyms

ACM Abstract Control Model
ADC Analog to Digital Converter
ADK Accessory Development Kit
ALU Arithmetic and Logic Unit
ARM Advanced RISC Machines
BIOS Basic Input/ Output System
CD Compact Disc
CNES National Centre for Space Studies
COM Port Communication Port
CPU Central Processing Unit
DAC Digital to Analog Converter
DC Direct Current
DIY Do It Yourself
DVD Digital Versatile Disc
EEPROM Electronically Erasable Programmable Read-Only Memory
FPGA Field-programmable Gate Array
GNU GNU’s Not Unix
GPS Global Positioning System
GPL General Public License
GSM Global System for Mobile Communications
GUI Graphical User Interface
ICSP In-Circuit Serial Programming
IDE Integrated Development Environment
LAPACK Linear Algebra Package
LCD Liquid Crystal Display
LDR Light Dependent Resistor
LED Light Emitting Diode

xv

xvi List of Acronyms

MRI Magnetic Resonance Imaging
MISO Master Input, Slave output
MOSI Master out, Slave input
NTC Negative Temperature Coefficient
OGP Open Graphics Project
OS Operating System
OSHW Open Source Hardware
PCB Printed Circuit Board
PTC Positive Temperature Coefficient
PWM Pulse width modulation
RAM Random-access Memory
ROM Read Only Memory
RS Recommended Standard
RTC Real Time Clock
Rx Receiver
SD Card Secure Digital Card
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TCL Tool Command Language
Tx Transmitter
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

Chapter 1

Introduction

Microcontrollers are the foundation for a modern, manufacturing based, economy.
One cannot fulfill the dreams of one’s citizens without a thriving manufacturing
sector. As it is open source, Arduino is of particular interest to hobbyists, students,
small and medium scale manufacturers, and people from developing countries, in
particular.

Scilab is a state of the art computing software. It is also open source. As a result,
this is also extremely useful to the groups mentioned above. If the French National
Space Agency CNES can extensively use Scilab [1], why can’t others rely on it? If
many of India’s satellites can be placed in their precise orbits by the Ariane rockets
launched by CNES through Scilab calculations, why can’t others use Scilab?

Although Arduino and Scilab are versatile, powerful and free, there has not been
much literature that teaches how to integrate them. To address this gap, we have
written this book. Xcos is a GUI based system building tool for Scilab, somewhat
similar to Simulink R©1. Through Xcos, it is possible to build interconnected systems
graphically. Xcos also is an open source software tool. In this book, we provide Xcos
code to drive Arduino Uno board.

The only way we can become versatile in hardware is through hands-on training.
To this end, we make use of the easily available low cost Arduino Uno board to
introduce the reader to computer interfacing. We also make available the details of
a shield that makes the Arduino use extremely easy and intuitive. We tell the user
how to install the firmware to make the Arduino Uno board communicate with the
computer. We explain how to control the peripherals on the Arduino Uno board
with user developed software.

The Scilab Arduino toolbox is already available for Windows [2]. We have suit-
ably modified it, so that it works on Linux also. In addition to these toolboxes,

1Simulink R© is a registered trademark of Mathworks, Inc.

2 1. Introduction

we provide the firmware and a program to check it. Finally, we give the required
programs to experiment with the sensors and actuators that come with the shield,
a DC motor and a servomotor. These programs are available for all of the following
three environments: Arduino IDE, Scilab scripts and Xcos.

This book teaches how to access the following sensors and actuators: LED, push-
button, DC motor, Potentiometer and Servo motor. A set of two to five programs
are given for each. These are given for Arduino IDE, Scilab and Xcos. We explain
where to find these programs and how to execute them for each experiment.

This book is written for self learners and hobbyists. It has been field tested by
250 people who attended a hands-on workshop conducted at IIT Bombay in July
2015. It has also been field tested by 25 people who participated in a TEQIP course
held in Amravati in November 2015.

All the code described in this book is available at http://os-hardware.in/
arduino/scilab-arduino-files.zip. On downloading and unzipping it, it
will open a folder Origin in the current directory. All the files mentioned in this
book are with reference to this folder2.

2This naming convention will be used throughout this book. Users are expected to download
this file and use it while reading this book.

Chapter 2

Hardware Environment

In this book, we shall use an Arduino Uno board and associated circuitry to perform
several experiments on data acquisition and control. This chapter will briefly take
you through the hardware environment needed to perform these experiments. We will
start with the introduction to a microcontroller followed by a brief on Open Source
Hardware. Then, we shall go through the history and hardware specifications of the
Arduino Uno board and the schema and uses of the Shield provided in the kit.

2.1 Microcontroller

A microcontoller is a ”smart” and complex programmable digital circuit that con-
tains a processor, memory and input/output peripherals on a single integrated cir-
cuit. Effectively, it can function as a small computer that can perform a variety of
applications. A few of these day to day applications include:

• Automotive: Braking, driver assist, fault diagnosis, power steering

• Household appliances: CD/DVD players, washing machines, microwave ovens,
energy meters

• Telecommunication: Mobile phones, switches, routers, ethernet controllers

• Medical: Implantable devices, MRI, ultrasound, dental imaging

• General: Automation, safety systems, electronic measurement instruments

2.1.1 Organization of a Microcontroller

In this section, we will give a brief overview of the organization of a typical micro-
controller. A microcontroller consists of three major components, namely, Processor,

4 2. Hardware Environment

Figure 2.1: Functional block diagram of a microcontroller

Memory and Peripherals. The basic block diagram of a microcontroller is shown in
Fig. 2.1. We shall briefly review the functionality of each block.

Processor: It is also known as a Central Processing Unit (CPU). A processor is the
heart of any computer/embedded system. The applications running on these
systems involve arithmetic and logic operations. These operations are further
simplified into instructions and fed to the processor. The Instruction decoder
decodes these instructions while arithmetic and logic operations are taken care
of by an Arithmetic and Logic Unit (ALU). A modern day CPU can execute
millions of instructions per second (MIPS).

Memory: A computer memory, usually a semiconductor device, is used to hold data
and instructions. Depending on the make, it could be volatile or non volatile
in nature. There are different types of memory:

1. Read Only Memory (ROM): It is a non-volatile storage entity. It is used
in computers, phones, modems, watches and other electronic devices. A
program is typically uploaded (flashed) to ROM through PC. Its content

2.1. Microcontroller 5

cannot be modified; it can only be erased and flashed using compatible
tools.

2. Random-access Memory: RAM is a volatile storage entity. It is used by
CPU to store intermediate data during execution of a program. RAM is
usually faster than ROM.

3. Electronically Erasable Programmable Read-Only Memory: EEPROM is
an optional non-volatile storage entity. It can be erased and written by
the running program. For example, it can be used to store values of a
temperature sensor connected to the microcontroller.

2.1.2 Microcontroller Peripherals

Microcontrollers have a few built in peripherals. In this section, we will review them
briefly.

Clock: A complex digital circuit, such as the one that is present in a microcontroller,
requires a clock pulse to synchronize different parts of it. The clock is generated
through internal or external crystal oscillator. A typical microcontroller can
execute one instruction per clock cycle (time between two consecutive clock
pulses).

Timer/Counter: A timer is a pulse counter. A timer circuit is controlled by reg-
isters. An 8 bit timer can count from 0 to 255. A timer is primarily used to
generate delay, and could be configured to count events.

Input/Output Ports: I/O ports correspond to physical pins on microcontroller.
They are used to interface external peripherals. A port can be configured as
input or output by setting bits in I/O registers. Each pin can be individually
addressed too.

Interrupts: An interrupt to the CPU suspends running program and executes a
code block corresponding to it. After serving/attending interrupts, the CPU
resumes the previous program and continues. An interrupt could be originated
by the software or the hardware. A hardware interrupt normally has a higher
priority.

Universal Asynchronous Receiver/Transmitter (UART): UART is a standard mi-
crocontroller peripheral to communicate with external serial enabled devices.
It has two dedicated pins to be used as Rx (Receiver) and Tx (Transmitter).
The baud rate defines the speed of the UART and can be configured using
registers.

6 2. Hardware Environment

Figure 2.2: ADC resolution

Analog to Digital Converter (ADC): Most of the signals around us are continuous.
Digital circuits cannot process them. An ADC converts them into digital
signals. The resolution of the ADC determines the efficiency of conversion. For
example, a 10 bit resolution of the ADC relates to 1024 values per sample. This
is shown pictorially in Fig. 2.2. Higher resolution relates to better translation
of an analog signal.

Digital to Analog Converter (DAC): Digital output of CPU is converted to analog
signals using pulse width modulation (PWM) technique. The output of a DAC
is used to drive analog devices and actuators.

Serial Peripheral Interface (SPI): SPI is a synchronous 4 wire serial communication
device. It requires a master and slave configuration. The SPI peripheral has
dedicated pins and marked as:

1. SCLK (from Master)

2. MOSI (Master out, Slave input)

3. MISO (Master Input, Slave output)

4. Slave select (Active when 0V, originates from Master)

Firmware: Firmware is an application that configures the hardware. It is pro-
grammed to a non volatile memory such as ROM, EPROM (Erasable Pro-
grammable ROM). This concept is used in computer BIOS and embedded

2.2. Open Source Hardware (OSHW) 7

Figure 2.3: The logo of Open Source Hardware

devices. In a microcontroller setup, a firmware file contains addresses and
hexadecimal values.

Interfacing: Some of the popular connections with microcontrollers include,

1. Digital input devices: switch, keypad, encoder, multiplexer, touchscreen
2. Digital output devices: LED, LCD, relay, buzzer
3. Digital input and output devices: RTC (Real Time Clock), SD Card,

external ROM
4. Analog input devices: audio, sensor, potentiometer
5. Analog output devices: brightness control, speaker
6. Serial communication (UART): GSM, GPS, zigbee, bluetooth

2.2 Open Source Hardware (OSHW)

In this section, we will introduce the reader to Open Source Hardware (OSHW),
which is defined as follows [3]:

Open source hardware is a hardware whose design is made publicly avail-
able so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design...

The OSHW website [3] gives additional conditions to be fulfilled before a hardware
can be called as OSHW. It also argues why we should promote and contribute to
OSHW. The logo of OSHW is given in Fig. 2.3 [4]. The open source hardware
initiative is popular in electronic, computing hardware and automation industry.
Here are some examples of open source hardware projects:

1. The “open compute project” at Facebook shares the design of data center
products.

2. Beagle board, Panda board, OLinuXino are ARM based development boards.

8 2. Hardware Environment

3. “Open Graphics Project (OGP)” releases the designs of graphics card.

4. “ArduCopter” is a UAV (unmanned aerial vehicle) created by DIY Drones
community.

5. “NetFPGA” is a prototyping of computer network devices.

6. “OpenROV” project (Open source remotely operated vehicle) aims at afford-
able underwater exploration.

7. “OpenMoko” project set foundation for open source mobile phones. “Neo 1973”
was the first smartphone released in 2007 with Linux based operating system,
it had 128MB RAM and 64MB ROM.

Companies like Adafruit Industries, Texas Instruments, Solarbotics, Sparkfun
electronics, MakerBot industries and DIY Drones have proven the power of OSHW
with their revenues. Nevertheless, collaborative innovation using OSHW is yet to
establish itself in mainstream. But the trend has certainly started and is going
strong. There are now many robotics startups taking full use of OSHW.

2.3 Arduino

Arduino is an open source microcontroller board and a software development en-
vironment. Arduino language is a C like programming language which is easy to
learn and understand. Arduino has two components, open source hardware and open
source software. We will cover the basics of the Arduino hardware in this section.

2.3.1 Brief History

Arduino project was started at the Interaction Design Institute Ivrea in Ivrea, Italy.
The aim was to create a low cost microcontroller board that anyone with little or
no background domain knowledge can design and develop. Arduino uses expansion
circuit boards known as shields. Shields can provide GPS, GSM, Bluetooth, Zigbee,
motor and other functionality.

Within the first two years of its inception, the Arduino Team sold more than
50,000 boards. In 2011, Google announced The Android Open Accessory Develop-
ment Kit (ADK), which enables Arduino boards to interface with Android mobile
platform.

Today Arduino is first choice for electronic designers and hobbyists. There are
more than 13 official variants of Arduino, and many more third party Arduino soft-
ware compatible boards.

2.3. Arduino 9

Figure 2.4: Arduino Uno Board

2.3.2 Arduino Uno Board

There are different Arduino boards for different requirements. All original Arduino
boards are based on ATMEL microcontrollers. In this section, we will briefly discuss
the Arduino Uno board, the most popular Arduino board. We will illustrate all
applications using the Arduino Uno board in this book.

Based on ATmega328, the Arduino Uno board has 14 digital input/output pins,
6 analog inputs, 6 PWM pins, a 16 MHz ceramic resonator, a power jack, an ICSP
(In-Circuit Serial Programming) header, and a reset button. It has on board USB
to serial converter, and can be connected to PC using USB cable. Fig. 2.4 has a
picture of this board [5]. Table 2.1 has the specifications of the Arduino Uno board.

Another popular board is Arduino Mega board. Based on ATmega2560, this
board has almost double the size of program memory (ROM) compared to Arduino
Uno. It also has extra serial ports, digital and PWM pins. Fig. 2.5 has a picture of
this board [6].

Yet another popular board is LilyPad Arduino, a small circular board for fabric
designers. It can be stitched with conductive thread, and it supports sensors and
actuators. Fig. 2.6 has a picture of this board [7].

There are other similar configuration boards with different form factors, such as
Arduino Fio, Arduino mini, Arduino nano, Arduino Duemilanove, Arduino serial
and so on.

2.3.3 Popular Arduino Projects

People around the globe are using Arduino in innovative ways. Its ease to setup and
use, intuitive, simple software and low cost. We list a few of these projects to give a
flavour of some of these interesting applications.

10 2. Hardware Environment

Parameter Value
Microcontroller 2
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB (ATmega328), 0.5 KB used by bootloader
SRAM 2KB (ATmega328)
EEPROM 1KB (ATmega328)
Clock Speed 16 MHz
Length 68.6 mm
Width 53.4 mm
Weight 25g

Table 2.1: Arduino Uno hardware specifications

Figure 2.5: Arduino Mega Board

Arduino phone: An Arduino connected with graphic LCD and a GSM shield.
This low tech phone, shown in Fig. 2.7 can be built in a few hours [8].

2.4. Shield 11

Figure 2.6: LilyPad Arduino Board

Figure 2.7: Arduino Phone

Candy sorting machine: As the name suggest this machine can sort candy based
on its color to separate jars [9].

3D printers: There are open source 3D printers based on Arduino and Raspberry-
pi. Although 3D printers are relatively slow and lack precision, but they can be ideal
for building prototypes by hobbyists [10].

2.4 Shield

The shield that we use in this book is a modified version of the Diode Codeshield
board [11], which makes it easy to perform experiments on the Arduino Uno board.

12 2. Hardware Environment

Figure 2.8: 3D printer

The shield is a printed circuit board (PCB) with a large number of sensors, already
wired and hence, ready to use. It obviates the need for a breadboard as an intermedi-
ate tool for electronics circuit prototyping, which is quite cumbersome for beginners.
The shield provides the user a faster way of circuit prototyping without worrying
much about troubleshooting.

The numbering on the shield is identical to that on the Arduino Uno board.
The shield fits snugly on to the Arduino Uno board, obviating the need to do the
wiring in many experiments. One can even say that shields have made the hardware
experiments involving Arduino boards as easy as writing software.

All the experiments in this book have been verified with the use of a modified
version of Diode CodeShield, as mentioned above. We make available all the required
information to make a shield, thus making this a OSHW, see Sec. 2.2.

We now explain where the required files to make our shield are given. The
gerber file to make the shield is given in Origin/tools/shield/gerber-V1.2,
see Footnote 2 on page 2. The image of the PCB file is given in Fig. 2.9, which
also helps locate the PCB file. The pictorial representation of the schematic for the
shield is given in Fig. 2.10, which also helps locate the schematic of the shield. A
photograph of the PCB after fabrication is given in Fig. 2.11.

The values of the various components used in the shield are given in Table 2.2.
Table 2.3 provides information about various sensors, components on Shield and its
corresponding pin number on Arduino Board [11]. A picture of the completed shield
is in Fig. 2.12.

2.5 Experimental Test Bed

We experimented the contents of this book with the following list. We will refer to
this as a kit in the rest of this book.

1. Arduino Uno board

2. Shield containing

2.5. Experimental Test Bed 13

Figure 2.9: PCB image of the shield. The PCB file can be found at
Origin/tools/shield/shield-V1p2.brd, see Footnote 2 on page 2.

(a) LED

(b) LDR

(c) Push Button

(d) Thermistor

3. DC motor and its controller board

4. Servo motor

5. Energy meter with modbus interface

The /arduino/ board is easily available in the market. The shield is designed by
us. Details of most of these units are provided in the previous sections. Information
on all of these is available at the file, mentioned in Footnote 2.

14 2. Hardware Environment

Figure 2.10: Pictorial representation of the schematic of the shield. The actual
schematic can be found at Origin/tools/shield/shield-V1p2.sch., see
Footnote 2 on page 2

2.5. Experimental Test Bed 15

Figure 2.11: PCB of the shield. The actual image can be found at
Origin/tools/shield/shield-V1p2.sch., see Footnote 2 on page 2

Figure 2.12: Picture of the shield with all components

16 2. Hardware Environment

Table 2.2: Values of components used in the shield

Name Description Quantity
R1 100Ω Resistor (Br-Bl-Br) 1
R2, R3, R4 91Ω Resistor (Wt-Br-Bl) 3
R5, R6, R7, R8 10KΩ Resistor (Br-Bl-Or) 4
R9 1KΩ Resistor (Br-Bl-Rd) 1
D1 Diode 1
Relay Relay 1
X1 Terminal block 1
Piezo Piezo 1
LED 1 LED - 2 lead 1
LED 2 RGB LED 1
T1 Transistor 1
SWITCH Switch 1
BUTTON, RESET Push button 2
PHOTO Photo resistor 1
HALL Hall effect sensor 1
POT Potentiometer 1
ENC Rotary encoder 1
THERM Thermistor 1
SERVO Servo 1
SERVO-PARTS Servo parts 1
NUT, BOLT Nut, bolt 2
HEADER 6x pin header 2
HEADER 8x pin header 2

Table 2.3: Information on sensors and pin numbers

Shield components Arduino pin
RGB LED BLUE Digital Pin 9
RGB LED GREEN Digital Pin 10
RGB LED RED Digital Pin 11
PUSH BUTTON Digital Pin 12
THERMISTOR Analog Pin 4
RELAY Digital Pin 2
POTENTIOMETER Analog Pin 2
PHOTORESISTOR(LDR) Analog Pin 5
HALL EFFECT SENSOR Analog Pin 3
BUZZER Digital Pin 3

Chapter 3

Software Environment

In this chapter, we shall briefly walk through the software environment that needs to
be set up before we could start with the Arduino Uno board based experiments. We
shall start with the Arduino Uno compatible Integrated Development Environment
(IDE), termed as Arduino IDE, that would be used to load the firmware on to the
microcontroller. The firmware to be loaded could be developed to serve different
purposes as per the requirement. For example,

• To run Arduino Uno stand alone, without waiting for any commands from
other software or hardware, for the specified time or until power off

• To decode the commands sent by other software, such as Scilab, through serial
port, and execute the given instructions

Next, we shall discuss Scilab and Xcos, which are open source software tools, and
a related toolbox that can communicate with Arduino Uno over a serial port using
RS232 protocol.

3.1 Arduino IDE

Arduino development environment is compatible with popular desktop operating
systems. In this section, we will learn to set up this tool for the computers running
Microsoft Windows or Linux. Later, we shall explore the important menu options in
the Arduino IDE and run a sample program. Following two steps have to be followed
whatever operating system is used:

1. To begin, we need an Arduino Uno board with a USB cable (A plug to B plug)
as shown in the Fig. 2.4.

2. Connect it to a computer and power it up.

18 3. Software Environment

3.1.1 Downloading and installing on Windows

First carry out the steps numbered 1 and 2 given above. Starting from download,
we shall go through the steps to set up Arduino IDE on Windows OS:

3. Visit the URL,
http://www.arduino.cc/en/Main/Software
locate on the right side of the page the link Windows ZIP file for non admin
install and click it. This may redirect you to download/donate page. Read the
instructions and proceed with the download.

4. Extract the downloaded ZIP file to Desktop. Do not alter any file or directory
structure.

5. Click on the Windows Start Menu, and open up the “Control Panel”.

6. While in the Control Panel, navigate to “System and Security”, click on “Sys-
tem” and then choose the “Device Manager”.

7. Look for “Other devices” in the “Device Manager” list, expand and locate “Un-
known device”. This may be similar to what is shown in Fig. 3.1.

8. Right click on the “Unknown device” and select the “Update Driver Software”
option as shown in Fig. 3.2.

9. Next, choose the “Browse my computer for Driver software” option.

10. Navigate to newly extracted Arduino folder on the Desktop and select “drivers”
folder.

11. Windows will now finish the driver installation. The Arduino IDE is ready for
use.

3.1.2 Downloading and installing on GNU/Linux Ubuntu

We will now explain the installation of Arduino software on the GNU/Linux oper-
ating system. We shall perform the installation on the 64 bit Ubuntu 14.04 LTS
(Trusty Tahr) operating system. These instructions will work for other GNU distri-
butions too, with little or no modification. First carry out the steps numbered 1 and
2 given above. Then carry out the following:

3. Find out your operating system support for 64 bit instructions. Open the
terminal emulator and type, uname -m

3.1. Arduino IDE 19

Figure 3.1: Windows device manager

4. If it returns “x86_64”, then your computer has 64 bit operating system. There
is no visible performance difference in 32 and 64 bit Arduino versions.

5. Download the suitable Arduino Software version (32 or 64 bits) from
http://arduino.cc/en/Main/Software. As mentioned earlier, we will
perform experiments with a 64 bit installation.

6. At the time of writing this book, we worked with version 1.05. Assuming that
you have downloaded tar file in ~/Downloads directory, perform the following
steps on the terminal:

cd ~/Downloads
tar -zxvf arduino-1.0.5-linux64.tgz
sudo mv arduino-1.0.5 /opt

7. In the same terminal session, install the required Java Runtime Environment
with a command like, sudo apt-get -y install openjdk-7-jre

20 3. Software Environment

Figure 3.2: Windows update driver option

8. Execute the following command on the terminal to list the serial port number.
ls -l /dev/ttyACM*
Note down the serial device filename. Suppose that it is ttyACM0.

9. To make USB port available to all users, set the read write permission to the
listed port: sudo chmod a+rw /dev/ttyACM0

10. Create a shortcut on the desktop:
cd ~/Desktop
ln -s /opt/arduino-1.0.5/arduino

11. Give executable permission to this file through the following command on the
terminal: chmod +x arduino

Then double click the Arduino shortcut on the Desktop and, click “Run” in the dialog
window to start the Arduino IDE. The dialog box is shown in Fig. 3.3 for reference.
The Arduino IDE is now ready for use.

3.1. Arduino IDE 21

Figure 3.3: Confirmation for executing Arduino script

Figure 3.4: Arduino IDE

3.1.3 Arduino Development Environment

The Arduino development environment, as shown in Fig. 3.4, consists of a text editor
for writing code, a message area, a text console, a toolbar with buttons for common
functions, and a series of menus. It connects to the Arduino hardware to upload
programs and communicate with them.

22 3. Software Environment

Software written using Arduino are called sketches. These sketches are written
in the text editor. Sketches are saved with the file extension “.ino”. The frequently
used icons shown in the toolbar, below the menu bar, are explained next. The names
of these icons can be viewed by hovering the mouse pointer over each of them.

1. Verify: Checks your code for errors

2. Upload: Compiles your code and uploads it to the Arduino I/O board

3. New: Creates a new sketch

4. Open: Presents a menu of all the sketches in your sketchbook - clicking one
will open it within the current window

5. Save: Saves your sketch

6. Serial Monitor: Opens the serial port window - the location of this is shown in
the top right hand corner of Fig. 3.4

Note that these appear from left to right in the editor window. Next, we shall go
through the additional useful options under menu.

1. File

(a) Examples: Examples that come at the time of installation

(b) Page Setup: Configures the page parameters for printer

(c) Preferences: Customizes font, language and other parameters for the IDE

2. Sketch

(a) Import Library: Adds a library to your sketch by inserting #include
statements at the start of your code

3. Tools

(a) Auto Format: Indents code so that opening and closing curly braces line
up

(b) Archive Sketch: Archives a copy of the current sketch in .zip format. The
archive is placed in the same directory as the sketch.

(c) Board: Selects the board that you’re using

(d) Serial Port: This menu contains all the serial devices (real or virtual) on
your machine. It should automatically refresh every time you open the
top-level tools menu.

3.1. Arduino IDE 23

(e) Programmer: This can be used to select a hardware programmer when
programming a board or chip and not using the onboard USB-serial con-
nection. Normally you won’t need this, but if you’re burning a bootloader
to a new microcontroller, you will use this.

(f) Burn Bootloader: The items in this menu allow you to burn a bootloader
onto the microcontroller on an Arduino board. This is not required for
normal use of an Arduino board but is useful if you purchase a new AT-
mega microcontroller (which normally comes without a bootloader). En-
sure that you’ve selected the correct board from the Boards menu before
burning the bootloader.

3.1.4 Testing Arduino with a sample program

Now, as we have a basic understanding of Arduino IDE, let us try an example
program.

1. Open the Arduino IDE by clicking the shortcut “arduino” from Desktop in
Ubuntu. In MS Windows browse to extracted Arduino folder on Desktop and
double click on “arduino.exe”.

2. In the Arduino IDE, to know the path of your sketch files, navigate to File,
then Preferences and then locate the “Sketchbook location” text box at the
top. You may change the path of your storage location. In this book we will
keep it unchanged. The path will be different for Windows and Ubuntu.

3. To load a sample program, navigate and click on sketch “File”, then Examples,
then 01.Basics, and then Blink.

4. A new IDE instance will open with Blink LED code. You may close the
previous IDE window now.

5. Click “verify” to compile. The “status bar” below text editor shall show “Done
compiling” on success.

6. Connect Arduino UNO board to PC. You may connect the board before writing
the sketch too.

7. Now, navigate to “Tools”, then Port and select the available port. If port option
is greyed out (or disabled) then reinsert the USB cable to PC.

8. Now select the upload button to compile and send the firmware to the Arduino
Uno board.

24 3. Software Environment

9. If upload is successful, you will notice the onboard orange LED next to Arduino
logo will start blinking.

10. It is safe to detach USB cable at any moment.

Arduino programming syntax is different from other languages. In an embedded
set up, a program is expected to run forever. To facilitate this, Arduino programming
structure has two main functions: Setup(): Used to initialize variables, pin modes,
libraries etc. The setup function will run only once after each power up or board
reset. loop(): Code inside this function runs forever. An Arduino program must
have setup() and loop() functions. We will give several examples in this book to
explain this usage.

An inbuilt offline help is available within the IDE. You may access explanation
on IDE by navigating to “Help” and then Environment. Access Arduino language
reference at “Help” and then Reference. Access FAQs and troubleshooting tricks at
“Help” and then Troubleshooting.

3.2 Scilab

Scilab is a free and open source computing software for science and engineering
applications [12]. It is released under GPL compatible CeCILL licence. It uses
the state of the art linear algebra package LAPACK, just as in Matlab. Scilab
has hundreds of inbuilt functions which cater to a variety of areas such as signal
processing, control system design, statistics, optimization and many more. It has 2D
and 3D visualisation capabilities for generating excellent plots. It provides Matlab
binary files reading and writing capabilities and also a Matlab to Scilab conversion
tool. Scilab can also interact with other major programming languages such as
Fortran, C, C++, Python, Java and TCL/TK [13]. It has a graphical editor called
Xcos, which is similar to Simulink of Matlab.

3.2.1 Downloading and installing Scilab

Scilab can be downloaded free of cost from www.scilab.org. It is available for
all popular operating systems, including Windows, Linux and Mac OS X systems.
This book uses Scilab-5.5.2 for demonstrating the experiments, both on Windows
and Linux.

For Windows system, the downloaded file is an executable (.exe) file. It has to
be double clicked to start the installation. All the default parameters of installation
are acceptable. It has to be noted that Scilab requires internet connectivity during
installation on Windows. There is an option in the beginning of the installation to

3.2. Scilab 25

Figure 3.5: Linux terminal to launch Scilab

continue offline but it is not recommended. Scilab can be launched either from the
Start menu or by double clicking on Scilab icon created on the Desktop (if any).

Package managers of Linux do not have the latest versions of Scilab. As a result,
downloading directly from the Scilab website, http://scilab.org, is recom-
mended, as there are differences in Scilab from version to version. We expect such
problems to be overcome in the future. The file downloaded will be in a tar.gz
format. It has to be extracted before use. It is a portable version and needs no
installation. Scilab can be launched and used right away. To launch Scilab, open
a terminal by pressing the Alt+Ctrl+T keys together. Change the directory where
Scilab is extracted. Browse till the /bin directory. Type the command ls to see
a few Scilab files. Then execute the command sudo ./scilab. Note that Scilab
needs to be launched with root permissions to be able to communicate with Arduino
Uno. This process is illustrated in Fig. 3.5.

3.2.2 Scilab Arduino toolbox

Scilab, by default, does not have the capability to connect to Arduino. All such add-
on functionalities are added to Scilab using toolboxes. Just like we have different
installation binaries of Scilab for Windows and Linux, we have different toolboxes
types for Windows and Linux. The Scilab Arduino toolbox can be found inside the
Origin/tools/windows or Origin/tools/linux directory, see Footnote 2 on
page 2. Use the one depending upon which operating system you are using. The
Scilab codes for various experiments mentioned throughout this book can be found
in Origin/user-code directory. The user-code directory will have many sub-
directories as per the experiments.

Let us now see how to load the Scilab Arduino toolbox.

1. First launch Scilab. On a Windows system, one may start/launch Scilab either
through the Start menu or by double clicking on the shorcut icon created on
the Desktop. On a Linux system, one has to start Scilab through a terminal

26 3. Software Environment

Figure 3.6: Changing scilab directory

with root permissions, as explained in section 3.2.1.

2. After launching Scilab, first we have to change the working directory. To do so,
click on the Filemenu and then click on the Change current directory
option as shown in Fig. 3.6.

3. Then, one has to browse to the toolbox folder Origin/tools/windows or
Origin/tools/linux, as the case may be, and click on, open, as shown in
Fig. 3.7.

4. After the previous step, the Scilab working directory becomes the toolbox
folder. See the file browser panel on the left hand side of the Scilab
console, see Fig. 3.8. It will list out the contents of your current working
directory. For a check, look for the file builder.sce. If you see this file,
then you are in the right directory.

3.2. Scilab 27

Figure 3.7: Browsing toolbox directory

5. Next, type the following command on the Scilab console: exec builder.sce
- this will build the toolbox and create a file loader.sce. This step has to
be executed only the first time. Output of this step is illustrated in Fig. 3.8.

6. Next, type the command, exec loader.sce - this will load the toolbox.
This means all the new functions corresponding to the toolbox are all loaded
in the workspace. It will also make available new Xcos blocks, if any. The
output of this command is as shown in Fig. 3.9. If you clear the work space
for any reason, you will have to execute this command once again3

The toolbox is now loaded and available for use.

3.2.3 Identifying Arduino communication port number

Connect Arduino Uno board to your computer. On a Windows system, doing so
for the first time will initiate Windows device identification routine. It may take a

3Be careful not to execute the clear command. This will clear the loaded toolbox and you will
have to execute the loader.sce file again.

28 3. Software Environment

Figure 3.8: Output of builder.sce

while before it finishes assigning a COM port number to the Arduino Uno board.
If Arduino IDE is installed using the procedure outlined in Sec. 3.1, required USB
drivers for Arduino get installed automatically. Hence if you have installed the
Arduino IDE, it should not ask for drivers after you connect it. As usually Linux
systems come with required drivers, the device is automatically detected by the OS
on connection.

Now let us see how to identify the COM port number. For a Windows system,
open the Device Manager. To do so, right click on “My Computer" and choose
Properties. The Properties window that will open will have Device Manager in the
list on the left hand side. In the Device Manager window, look for “Ports (COM and
LPT)". Double click on it. It will show you the COM number for Arduino Uno.

The result of the above exercise is shown in Fig. 3.10. In this case, the system
has detected Arduino with port number 3, which appears as COM3. In this book,
we have taken the port for communication as 2 and written code consistent with
this assumption. As a result, we will now change it to COM24. To change the

4It is possible to leave it at whatever port number one gets. It is also possible to choose any

3.2. Scilab 29

Figure 3.9: Output of loader.sce

port number, double click on the port number. Its properties window will appear.
Click on the “Port settings" tab and then click on “Advanced" button as shown in
Fig. 3.11.

Click on the drop down menu for COM port numbers. Choose the port number
COM2. On clicking on “OK”, Windows may warn you that the port number is
already in use. But given that you do not have any other USB device connected
you may force change it. Click on “OK” to close all of the device manager windows.
Now, we are set to go ahead with port number 2. The stress on using port number
2 is just to be consistent throughout the book. It is mainly for a beginner.

Now, let us see how to identify the port number on a Linux system. Open a
terminal by pressing Alt+Ctrl+T keys together. Then type the following command
and press enter, ls -l /dev/ttyACM* - the output of this command is shown
in Fig. 3.12. It has detected the Arduino with port number “ttyACM0". The last
character in this string, namely 0, is the port number. You may get 0 or a number
such as 1 or 2 in your case, for the port number.

3.2.4 Testing Scilab-Arduino toolbox

Now let us test the functioning of the toolbox.

number between 2 and 99. In this case, the port number should be changed accordingly in the
code. We will point this out throughout the book.

30 3. Software Environment

Figure 3.10: Device Manager in windows

1. Install Arduino IDE, as explained in Sec. 3.1 and launch it.

2. Read into the Arduino IDE, the firmware Arduino Code 3.1.

3. Using the Upload option of the Arduino IDE, load this firmware on to the
Arduino Uno board.

4. Inside the Origin/tools directory, locate a file test_firmware.sce.
This file will be used to test whether the firmware is properly installed. This
is an important step, as the connection between the computer and Arduino
breaks down sometimes. The Scilab toolbox is unable to identify this difficulty
- it has to be externally done. If this difficulty is not identified and rectified,
one will waste a lot of time and effort trying to debug the error. This test has
to be done in case of difficulties.

5. In the Scilab console, type editor and press the enter key. This will launch

3.2. Scilab 31

Figure 3.11: COM port properties window

Figure 3.12: Port number on Linux terminal

the editor. Click on “File" menu and choose “Open". Browse to the direc-
tory Origin/tools and choose the file test_firmware.sce. It will open
Scilab Code 3.1.

6. If you are using a Windows system and have set your port number as COM2,
you need not make any changes to the file. Linux users, however, will mostly
identify the port number as “ttyACM0". Hence, they need to change the
following line number

32 3. Software Environment

Figure 3.13: Scilab test code output

2 h=open_ser ia l (1 ,2 ,115200) ;

to

h=open_ser ia l (1 ,0 ,115200)

7. To execute this code, on the menu bar, click on the Execute, option. Then
choose File with no echo. The output will appear on the console as
shown in Fig. 3.13. As shown in the figure, we see the response of this code as
“ans = " and “ok" three times. The code basically gives some input to Arduino
three times and the program inside it returns “ok" three times. This code thus
confirms the working of the Scilab-Arduino toolbox. The code also confirms
that the firmware inside the Arduino is correct. It is alright if one or two of
the attempts out of three give a blank response. But all the three responses
certainly should not be blank5.

Now let us take a look at the various functions facilitated by the toolbox. The
functions provided in the toolbox are as shown in Fig. 3.14. They are basically
categorized into four categories: configuration, digital, analog and motors. These
functions will be explained in detail in the subsequent chapters as and when they
are used.

5If this step is unsuccessful, one should check the connections and re-install the firmware

3.3. Xcos 33

Figure 3.14: Arduino toolbox functions used in this book

3.3 Xcos

Xcos is a graphical editor for Scilab [14]. Most of the mathematical manipulations
that can be done using Scilab scripts, can be done using Xcos also. The major
advantage of Xcos is the intuitive interface and easy connectivity across blocks.
Xcos even supports if else, for and while looping which form an integral part
of any programming language. It is possible to code the entire algorithm using Xcos
blocks alone. It is also possible to read from and write to Scilab workspace through
Xcos.

3.3.1 Downloading, installing and testing

Xcos comes pre-installed with Scilab. Hence a separate installation of Xcos is not
required. Let us explore the functionalities Xcos has to offer. Xcos basically provides
a graphical interface to Scilab.

Xcos can be launched from Scilab by clicking on the Xcos icon available on the
Scilab menu bar. It can also be launched by simply typing the command xcos in
the Scilab console. When Xcos is launched, it will open a palette browser. We have
shown this in Fig. 3.15, where we have selected a sine block. At the time of launch,
Xcos will also open an empty canvas, called untitled Xcos window.

Palette browser shows all of the available blocks that can be used. It has been
nicely categorized as per the functionality. For example, blocks which generate

34 3. Software Environment

Figure 3.15: Sine generator in palette browser

signals/values without any input, fall under the category Sources. Similarly, blocks
which take signals/values without giving any output are categorized as Sinks. This
makes finding a particular block very easy, specially when one does not know the
name of a block.

The untitled window is the one where one creates the Xcos code/diagram. The
relevant blocks have to be dragged and dropped from the palette browser to the
untitled window. The blocks are then interconnected and configured as per the
simulation, which we will demonstrate next.

3.3. Xcos 35

Figure 3.16: CSCOPE block in xcos

3.3.2 Use case

Let us build a simple Xcos simulation to plot a sine wave. This simulation requires
a sine wave source. It can be found in the Sources category as shown in Fig. 3.15.
Drag and drop this block in the untitled Xcos window.

Next, we need a block to plot the sine wave. A plotting block can be found in the
Sinks category as shown in Fig. 3.16. The name of this block is CSCOPE. Drag
and drop this block in the untitled Xcos window. On the left hand side, this block
has an input port for data. It is black in colour, which may not be obvious in a black
and white print out. The output from the sine block has to be connected to this
port. At its top side, the CSCOPE block has another input port, called an event
port. This is red in colour. This port is used to synchronise it with event generating
devices.

As the CSCOPE block has an input event port, we need a source which generates
events. Hence, the next block that we need is an event generator block and it can
be found in the Sources category. This is illustrated in figure 3.17. The name of
this block is CLOCK_c. Drag and drop this block in the untitled Xcos window.

The next step is to interconnect the blocks together. A black color port can only
be connected to other black color port. A black color port cannot be connected to a
red color port and vice versa. That is, a data port cannot be connected to an event
port. Linking two blocks is bit crucial and may need a few attempts before one gets
comfortable. To link two blocks, first click and hold the left mouse button over the
output port of the source block. Without releasing the mouse button, touch the
mouse pointer to the input port of the sink block. If a connection is possible there,
the port will turn “green”. At this point, release the mouse button and the blocks
should get connected. Follow this procedure and complete the connection as shown
in the Fig. 3.18. Save this file with name sine-generator.

Let us simulate this Xcos code. On the menu bar, click on the Simulation

36 3. Software Environment

Figure 3.17: CLOCK_c block in xcos

Figure 3.18: Sine generator in Xcos

menu and choose Start. You will get a graphic window with a running sine wave
as shown in Fig. 3.19.

This is because we are running the simulation using the default configuration. We
would like a stationary plot. If the simulation is still running, go to the Simulation
menu and choose Stop. Double click on the CSCOPE block. Its properties window
will appear as shown in 3.20. Note the value of the Refresh period. It is by
default 30. Click on Ok.

Next, on the menu bar, click on the simulation menu and choose Setup. The

3.3. Xcos 37

Figure 3.19: Sine generator Xcos output

Figure 3.20: CSCOPE configuration window

Set parameter window will open. The first parameter is Final integration
time. It decides for how long the simulation will run. Change it to be equal to
the Refresh period of the CSCOPE block. That is, change it to 30 as shown in
Fig. 3.21. Now start the simulation and you will get a static plot. Other paramenters
of blocks can also be changed. For example, one may want to change the input
amplitude/frequency or change the plot scales etc. All these are left to the reader
to explore.

38 3. Software Environment

Figure 3.21: Simulation setup window

Although we have demonstrated a very basic level of Xcos simulation, this idea
can be used for complex processes as well. Using Xcos, it is possible to have user-
defined blocks. The user can code the working of the block as a function in Scilab
script and then call it from Xcos. It is also possible to create subsystems. One
can even read from and write to C binaries. Xcos comes with several pre-defined
libraries and hence, it is possible to carry out other kinds of simulation, such as
electrical circuit simulation and basic thermo-hydraulic simulation, for example. A
detailed explanation and demonstration is beyond the scope for this book.

3.3.3 Xcos-Arduino

The Scilab Arduino toolbox not only provides functions to be used in Scilab scripts
but also provides with new Arduino-specific blocks. As shown in Fig. 3.22 new ar-
duino blocks are now available for use. Similar to the categorization of the functions,
the Xcos blocks are also categorized as configuration, digital, analog and motors.
Again, it is possible to conduct the experiments only using Xcos. Xcos codes for
every experiment are provided througout the book. The Arduino blocks can be eas-
ily connected to Xcos native blocks. A detailed block help for every block can be
sought by right clicking on the block and choosing “Block help". This is illustrated
in Fig. 3.23.

3.3. Xcos 39

Figure 3.22: Palette browser showing Arduino blocks

Figure 3.23: Xcos block help

40 3. Software Environment

3.4 Arduino Code

Arduino Code 3.1 First 10 lines of the Arduino firmware. Available at Origi
n/tools/arduino-firmware/arduino-firmware.ino, see Footnote 2 on
page 2.

1 /∗ Thi s f i l e i s meant t o be used w i th th e SCILAB a rdu i n o
2 t o o l b ox , however , i t can be used from the IDE env i r onmen t
3 (o r any o t h e r s e r i a l t e r m i n a l) by t y p i n g commands l i k e :
4

5 Conv e r s i o n a s c i i −> number
6 48−> ’0 ’ . . . 57−> ’9 ’ 58−> ’: ’ 59−> ’; ’ 60−>’<’ 61−>’=’ 62−>’>’ 63−> ’? ’

64−>’@ ’
7 65−>’A ’ . . . 90−>’Z ’ 91−> ’[’ 92−> ’\ ’ 93−> ’] ’ 94−>’^ ’ 95−>’_ ’ 96−> ’ ‘ ’
8 97−>’a ’ . . . 122−>’ z ’
9

10 Dan0 o r Dan1 : a t t a c h d i g i t a l p i n n (a s c i i f rom 2 to b) t o i n pu t (0)
o r ou tpu t (1)

3.5 Scilab Code

Scilab Code 3.1 A code to check whether the firmware is properly installed or not.
Available at Origin/tools/test_firmware.sce, see Footnote 2 on page 2.

1 mode (0)
2 h=open_ser ia l (1 ,2 ,115200) ;
3 for i =1:3
4 wr i t e_s e r i a l (1 , "v" ,1) ;
5 r ead_se r i a l (1 , 2)
6 end
7 c l o s e_ s e r i a l (1) ;

Chapter 4

Interfacing a Light Emitting Diode

In this chapter, we will learn how to control the LEDs on the shield and on the
Arduino Uno board. We will do this through the Arduino IDE, Scilab scripts and
Scilab Xcos. These are beginner level experiments, and often referred to as the hello
world task of Arduino. Although simple, controlling LED is a very important task
in all kinds of electronic boards.

4.1 Preliminaries

A light emitting diode (LED) is a special type of semiconductor diode, which emits
light when voltage is applied across its terminals. A typical LED has 2 leads: Anode,
the positive terminal and Cathode, the negative terminal. When sufficient voltage
is applied, electrons combine with the holes, thereby releasing energy in the form of
photons. These photons emit light and this phenomenon is known as electrolumi-
nescence. The symbolic representation of an LED is shown in Fig. 4.1. Generally,
LEDs are capable of emitting different colours. Changing the composition of alloys
that are present in LED helps produce different colours. A popular LED is an RGB
LED that actually has three LEDs: red, green and blue.

An RGB LED is present on the shield provided in the kit. In this section, we
will see how to light each of the LEDs present in the RGB LED. As a matter of fact,

Figure 4.1: Light Emitting Diode

42 4. Interfacing a Light Emitting Diode

Figure 4.2: Internal connection diagram for LED on the shield

Figure 4.3: Connecting Arduino and Shield

it is possible to create many colours by combining these three. A schematic of the
RGB LED in the shield is given in Fig. 4.2. The anode pins of red, green and blue
are, respectively, connected to pins 11, 10 and 9. Common Cathode is connected to
the ground.

It should be pointed out, however, that no wire connections are to be made by
the learner: all the required connections are already internally made available. The
LED of any colour can be turned on by putting a high voltage on the corresponding
anode pin.

One should remember to connect the shield on to the Arduino Uno board, as

4.2. Lighting the LED from the Arduino IDE 43

shown in Fig. 4.3. All the experiments in this chapter assume that the shield is
connected to the Arduino Uno board. It is also possible to do some of the experiments
without the shield, which is pointed out in the next section.

4.2 Lighting the LED from the Arduino IDE

In this section, we will describe some experiments that will help the LED light up
based on the command given from the Arduino IDE. We will also give the necessary
code. We will present four experiments in this section. The shield has to be attached
to the Arduino Uno board before doing these experiments. The reader should go
through the instructions given in Sec. 3.1 before getting started.

1. First, we will see how to light up the LED in different colours. An extremely
simple code is given in Arduino Code 4.1. On uploading this code, you can
see that the LED on the shield turns blue. It is extremely easy to explain this
code. Recall from the above discussion that we have to put a high voltage (5V)
on pin 9 to turn the blue light on. This is achieved by the following command:

3 S e r i a l . begin (115200) ;

Before that, we need to define pin 9 as the output pin. This is achieved by the
command,

2 pinMode (9 ,OUTPUT) ;

One can see that the blue light will be on continuously.

2. Next, we will modify the code slightly so that the blue light remains on for
two seconds and then turns off. Arduino Code 4.2 helps achieve this. In this,
we introduce a new command delay as below:

4 d i g i t a lWr i t e (9 ,HIGH) ;

This delay command halts the code for the time passed as in input argument.
In our case, it is 2,000 milliseconds, or 2 seconds. The next command,

5 delay (2000) ;

puts a low voltage on pin 9 to turn it off.

What is the role of the delay command? To find this, comment the delay
command. That is, replace the above delay command with the following and
upload the code.

// d e l a y (2 0 0 0) ;

44 4. Interfacing a Light Emitting Diode

If you observe carefully, you will see that the LED turns blue momentarily and
then turns off.

3. We mentioned earlier that it was possible to light more than one LED simul-
taneously. We will now describe this with another experiment. In this, we will
turn on both blue and red LEDs. We will keep both of them on for 5 seconds
and then turn blue off, leaving only red on. After 3 seconds, we will turn red
also off. This code is given in Arduino Code 4.3. Remember that before writ-
ing either HIGH or LOW on to any pin, its mode has to be declared as OUTPUT,
as given in the code. All the commands in this code are self explanatory.

4. Finally, we will give a hint of how to use the programming capabilities of the
Arduino IDE. For this, we will use Arduino Code 4.4. It makes the LED blink
5 times. Recall from the previous section that a HIGH on pin 10 turns on the
green LED. This cycle is executed for a total of five times. In each iteration,
it will turn the green LED on for a second by giving the HIGH signal and then
turn it off for a second by giving the LOW signal. This cycle is carried out for
a total of 5 times, because of the for loop.

Note: All the above four experiments have been done with the shield affixed to
the Arduino Uno board. One may run these experiments without the shield as well.
But in this case, pin number 13 has to be used in all experiments, as pin 13 lights
up the LED that is on the Arduino Uno board. For example, in Arduino Code 4.1,
one has to replace both occurrences of number 9 with 13. In this case, one will get
the LED of Arduino Uno board light up, as shown in Fig. 4.4.

Note: It should also be pointed out that only one colour is available in Arduino
Uno board. As a result, it is not possible to conduct the experiments that produce
different colours if the shield is not used.

Exercise 4.1 Carry out the following exercise:

1. In Arduino Code 4.2, remove the delay, as discussed above, and check what
happens.

2. Light up all three colours simultaneously, by modifying Arduino Code 4.3.
Change the combination of colours to get different colours.

3. Incorporate some of the features of earlier experiments into Arduino Code 4.4
and come up with different ways of blinking with different colour combina-
tions.

4.3. Lighting the LED from Scilab Scripts 45

Figure 4.4: LED experiments directly on Arduino Uno board, without the shield

4.3 Lighting the LED from Scilab Scripts

In this section, we discuss how to carry out the experiments of the previous section
from Scilab. We will list the same four experiments, in the same order. The shield
has to be attached to the Arduino Uno before carrying out these experiments, as
in Sec. 4.2. The reader should go through the instructions given in Sec. 3.2 before
getting started.

1. In the first experiment, we will light up the blue LED on the shield. The code
for this is given in Scilab Code 4.1. It begins with a command of the form

ok = open_ser ia l (1 ,PORT NUMBER,BAUD RATE)

We have used 2 for PORT NUMBER and 115200 for BAUD RATE. As a result,
this command becomes

1 ok = open_ser ia l (1 ,2 ,115200) ; // At p o r t 2 w i th baud r a t e o f 115200

This command is used to open the serial port. When the port is opened
successfully, it returns a value of 0, which gets stored in the variable ok.

Sometimes, the serial port does not open, as mentioned in the above command.
This is typically due to not closing the serial port properly in a previous exper-

46 4. Interfacing a Light Emitting Diode

iment. If this condition is not trapped, the program will wait forever, without
any information about this difficulty. One way to address this difficulty is to
terminate the program if the serial port does not open. This is achieved using
the error message of the following form:

i f ok~=0, e r r o r (Error Message in Quotes) ;

It checks if ok=0. If not, it flashes an error message and terminates. This line
gets implemented in the following way in Scilab Code 4.1.

2 i f ok~=0, e r r o r (’Check the s e r i a l port and try again ’) ;

We turn the LED on in the next line. This is achieved using a command of
the form

cmd_digital_out (1 ,PIN NUMBER,VALUE)

As we want to turn on the blue light in the shield, as discussed in Sec. 4.2,
we choose PIN NUMBER as 9. We can put any positive integer in the place of
VALUE. We arrive at the following command:

3 cmd_digital_out (1 , 9 , 1) // Th i s w i l l t u rn th e b l u e LED

The last line in the code closes the serial port. As mentioned above, it is
extremely important to close the serial port properly. If not closed properly,
there could be difficulties in running subsequent programs.

2. Scilab Code 4.2 does the same thing as what Arduino Code 4.2 does. It does
two more things than what Scilab Code 4.1 does: It makes the blue LED light
up for two seconds. This is achieved by the command

4 s l e e p (2000) // l e t th e b l u e LED be on f o r two s e c o nd s

The second thing this code does is to turn the blue LED off. This is achieved
by the command

5 cmd_digital_out (1 , 9 , 0) // tu rn o f f b l u e LED

It is easy to see that this code puts a 0 on pin 9.

3. Scilab Code 4.3 does the same thing as what Arduino Code 4.3 does. It turns
blue and red LEDs on for five seconds. After that, it turns off blue first. After
3 seconds, it turns off red also. So, when the program ends, no LED is lit up.

4. Scilab Code 4.4 does exactly what its counterpart in the Arduino IDE does.
It makes the green LED blink five times.

4.4. Lighting the LED from Scilab Xcos 47

Figure 4.5: Turning the blue LED on through Xcos. This is what one sees when Or
igin/user-code/led/scilab/led-blue.zcos, see Footnote 2 on page 2 is
invoked.

Exercise 4.2 Repeat the exercise of the previous section.

4.4 Lighting the LED from Scilab Xcos

In this section, we will see how to light the LEDs from Scilab Xcos. We will carry
out the same four experiments as in the previous sections. For each, we will give the
location of the zcos file and the parameters to set. The reader should go through
the instructions given in Sec. 3.3 before getting started.

1. First we will see how to turn on the blue LED. When the file required for this
experiment is invoked, one gets the GUI as in Fig. 4.5. In the caption of this
figure, one can see where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 4.1. All other
parameters are to be left unchanged.

48 4. Interfacing a Light Emitting Diode

Table 4.1: Parameters to light the blue LED in Xcos

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_WRITE_SB Digital pin 9

Arduino card number 1

Figure 4.6: Turning the blue LED on through Xcos for two seconds. This is what
one sees when Origin/user-code/led/scilab/led-blue-delay.zcos, see
Footnote 2 on page 2 is invoked.

2. In the second experiment, we will show how to turn on the blue LED on for
two seconds and then to turn it off. When the file required for this experiment
is invoked, one gets the GUI as in Fig. 4.6. In the caption of this figure, one
can see where to locate the file.

The values for each block required in this program are tabulated in Table 4.2.
All other parameters are to be left unchanged.

3. In the third experiment, we will show how to turn the blue LED and the red
LED on for five seconds, turn off the blue LED and three seconds later, turn
off the red LED also. When the file required for this experiment is invoked,
one gets the GUI as in Fig. 4.7. In the caption of this figure, one can see where

4.4. Lighting the LED from Scilab Xcos 49

Table 4.2: Parameters to light the blue LED in Xcos for two seconds

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_WRITE_SB Digital pin 9

Arduino card number 1
STEP_FUNCTION Step time 2

Initial value 1
Final value 0

Figure 4.7: Turning the blue and red LEDs on through Xcos and turning them off
one by one. This is what one sees when Origin/user-code/led/scilab/led
-blue-red.zcos, see Footnote 2 on page 2 is invoked.

to locate the file.

The values for each block required in this program are tabulated in Table 4.3.
All other parameters are to be left unchanged.

50 4. Interfacing a Light Emitting Diode

Table 4.3: Parameters to turn the blue and red LEDs on and then turn them off one
by one

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_WRITE_SB 1 Digital pin 9

Arduino card number 1
STEP_FUNCTION 1 Step time 5

Initial value 1
Final value 0

DIGITAL_WRITE_SB 2 Digital pin 11
Arduino card number 1

STEP_FUNCTION 2 Step time 8
Initial value 1
Final value 0

Table 4.4: Parameters to make the green LED blink every second

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_WRITE_SB Digital pin 10

Arduino card number 1
PULSE_SC Pulse width(% of period) 50

Period(secs) 2
Phase delay(secs) 0.1
Amplitude 1

4. We will conclude this section with an experiment to blink the green LED on
and off. When the file required for this experiment is invoked, one gets the
GUI as in Fig. 4.8. In the caption of this figure, one can see where to locate
the file.

The values for each block required in this program are tabulated in Table 4.4.
All other parameters are to be left unchanged.

4.4. Lighting the LED from Scilab Xcos 51

Figure 4.8: Blinking the green LED every second through Xcos. This is what one
sees when Origin/user-code/led/scilab/led-green-blink.zcos, see
Footnote 2 on page 2 is invoked.

Exercise 4.3 Carry out the following exercise:

1. Change the blink pattern for an array of LEDs

2. Change the delays

52 4. Interfacing a Light Emitting Diode

4.5 Arduino Code

Arduino Code 4.1 Turning on the blue LED. Available at Origin/user-code
/led/arduino/led-blue/led-blue.ino, see Footnote 2 on page 2.

1 void setup () {
2 pinMode (9 ,OUTPUT) ;
3 S e r i a l . begin (115200) ;
4 d i g i t a lWr i t e (9 ,HIGH) ;
5 }
6 void loop () {
7 }

Arduino Code 4.2 Turning on the blue LED and turning it off after two seconds.
Available at Origin/user-code/led/arduino/led-blue-delay/led-blu
e-delay.ino, see Footnote 2 on page 2.

1 void setup () {
2 pinMode (9 ,OUTPUT) ;
3 S e r i a l . begin (115200) ;
4 d i g i t a lWr i t e (9 ,HIGH) ;
5 delay (2000) ;
6 d i g i t a lWr i t e (9 ,LOW) ;
7 }
8 void loop () {
9 }

Arduino Code 4.3 Turning on blue and red LEDs for 5 seconds and then turning
them off one by one. Available at Origin/user-code/led/arduino/led-bl
ue-red/led-blue-red.ino, see Footnote 2 on page 2.

1 void setup () {
2 pinMode (9 ,OUTPUT) ;
3 pinMode (11 ,OUTPUT) ;
4 S e r i a l . begin (115200) ;
5 d i g i t a lWr i t e (9 ,HIGH) ;
6 d i g i t a lWr i t e (11 ,HIGH) ;
7 delay (5000) ;
8 d i g i t a lWr i t e (9 ,LOW) ;
9 delay (3000) ;

10 d i g i t a lWr i t e (11 ,LOW) ;
11 }
12 void loop () {
13 }

Arduino Code 4.4 Blinking the green LED. Available at Origin/user-code/
led/arduino/led-blink/led-blink.ino, see Footnote 2 on page 2.

4.6. Scilab Code 53

1 int i =0;
2 void setup () {
3 pinMode (10 , OUTPUT) ;
4 S e r i a l . begin (115200) ;
5 for (i =0; i <5; i++)
6 {
7 d i g i t a lWr i t e (10 , HIGH) ; // tu rn th e LED on (HIGH i s th e v o l t a g e

l e v e l)
8 delay (1000) ; // wa i t f o r a s e c ond
9 d i g i t a lWr i t e (10 , LOW) ; // tu rn th e LED o f f by making th e v o l t a g e

LOW
10 delay (1000) ; // wa i t f o r a s e c ond
11 }
12 }
13 void loop () {
14 }

4.6 Scilab Code

Scilab Code 4.1 Turning on the LED. Available at Origin/user-code/led/
scilab/led-blue.sce, see Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,2 ,115200) ; // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok~=0, e r r o r (’Check the s e r i a l port and try again ’) ;
3 cmd_digital_out (1 , 9 , 1) // Th i s w i l l t u rn th e b l u e LED
4 c l o s e_ s e r i a l (1) // To c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 4.2 Turning on the blue LED and turning it off after two seconds.
Available at Origin/user-code/led/scilab/led-blue-delay.sce, see
Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,2 ,115200) ;
2 i f ok~=0, e r r o r (’Check the s e r i a l port and try again ’) ; end
3 cmd_digital_out (1 , 9 , 1) // tu rn b l u e LED on
4 s l e e p (2000) // l e t th e b l u e LED be on f o r two s e c o nd s
5 cmd_digital_out (1 , 9 , 0) // tu rn o f f b l u e LED
6 c l o s e_ s e r i a l (1) // c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 4.3 Turning on blue and red LEDs for 5 seconds and then turning
them off one by one. Available at Origin/user-code/led/scilab/led-blu
e-red.sce, see Footnote 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end
3 cmd_digital_out (1 , 9 , 1) ; // Th i s t u r n s on th e b l u e Led
4 cmd_digital_out (1 , 11 , 1) ; // Th i s t u r n s on th e r ed Led
5 s l e e p (5000) ; // De lay f o r 5 s e c o nd s

54 4. Interfacing a Light Emitting Diode

6 cmd_digital_out (1 , 9 , 0) ; // Th i s t u r n s o f f t h e b l u e Led
7 s l e e p (3000) ; // De lay f o r 3 s e c o nd s
8 cmd_digital_out (1 , 11 , 0) ; // Th i s t u r n s o f f t h e r ed Led
9 c l o s e_ s e r i a l (1) ; // To c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 4.4 Blinking the green LED. Available at Origin/user-code/le
d/scilab/led-green-blink.sce, see Footnote 2 on page 2.

1 ok= open_ser ia l (1 ,2 ,115200) ; // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end
3 for i =1:5 // Running f o r l oop , 5 t ime s
4 cmd_digital_out (1 , 10 , 1) ; // Th i s t u r n s on th e g r e e n Led
5 s l e e p (1000) ; // De lay f o r 1 s e c ond
6 cmd_digital_out (1 , 10 , 0) ; // Th i s t u r n s o f f t h e g r e e n Led
7 s l e e p (1000) ; // De lay f o r 1 s e c ond
8 end
9 c l o s e_ s e r i a l (1) ; // To c l o s e th e c o n n e c t i o n s a f e l y

Chapter 5

Interfacing a Pushbutton

A pushbutton is a simple switch which is used to connect or disconnect a circuit.
It is commonly available as a normally open or push to make switch which implies
that the contact is made upon the push or depression of the switch. These switches
are widely used in calculators, computer keyboards, home appliances, push-button
telephones and basic mobile phones, etc. In this chapter, we shall perform a few
experiments to read the status of the pushbutton mounted on the shield of the
Arduino Uno board. Advancing further, we shall perform a few tasks depending on
the status of the pushbutton. Digital logic based status monitoring is a very basic
and important task in many industrial applications. This chapter will enable us to
have a smooth hands-on for such functionalities.

5.1 Preliminaries

A pushbutton mounted on the shield is connected to the digital pin 12 of the Arduino
Uno board. The connection diagram for the pushbutton is shown in Fig. 5.1. It has
2 pairs of terminals. Each pair is electrically connected. When the pushbutton is
pressed all the terminals short to complete the circuit, thereby allowing the flow of
current through the switch. As you might expect, there is a limit to the maximum
current that could flow through a pushbutton. This maximum current is also called
the rated current and is provided by the manufacturer in the datasheet.

5.2 Reading the Pushbutton status from the Arduino
IDE

In this section, we shall learn commands to read the status of a pushbutton through
Arduino IDE. Later, we shall change the state of the LED depending on the status

56 5. Interfacing a Pushbutton

Figure 5.1: Connection Diagram

of the pushbutton.

1. In the first experiment, we shall simply read the status of the pushbutton.
Recall that it is a normally open type of switch. So, in an unpressed state,
the logic read will be “0”, corresponding to 0V. And, when the user presses the
pushbutton, the reading would be “1”, corresponding to 5V. The code for this
experiment is given in Arduino Code 5.1. In the initialization part of the code,
we assign the sensor pin to be read, 12 in this case, to a variable for ease. Next,
we initialize the port for serial port communication at data rate of 9600 bits
per second and declare the digital pin 12 as an input pin using the command
pinMode. After initialization, we start reading the status of the pushbutton
using the following command:

5 pinMode (sensorPin , INPUT) ; // d e c l a r e th e s e n s o r P i n a s an
INPUT

Note that the input argument to this command is the digital pin 12 corre-
sponding to the pin to which the pushbutton is connected. After acquiring the
values, we print them using,

8 S e r i a l . p r i n t l n (sensorValue) ; // p r i n t i t a t th e S e r i a l
Mon i to r

We repeat this read and print process 1000 times by putting the commands in
a for loop. At the same time, the user must press and release the pushbutton
and observe the values printed on the serial monitor.

5.3. Reading the Pushbutton status from Scilab Scripts 57

2. In the second experiment, we shall control the power given to an LED as
per the status of the pushbutton. The code for this experiment is given in
Arduino Code 5.2. This experiment can be taken as a step further to the
previous one. We declare the LED pin to be controlled as an output pin by,

6 S e r i a l . begin (115200) ;

Next, we read the potentiometer value from digital pin 12. If the value is
“1”, we turn on the LED at pin 9 else we turn it off. The condition check
is performed using if else statements. We run these commands for 1000
iterations.

5.3 Reading the Pushbutton status from Scilab Scripts

In this section, we shall perform the pushbutton operation using Scilab-Arduino
toolbox commands.

1. In the first experiment, we will read the pushbutton status in Scilab Console.
The code for this experiment is given in Scilab Code 5.1. As explained earlier,
we begin with serial port initialization. Then, using the command,

4 va l = cmd_digital_in (1 ,12) ; // Read th e s t a t u s o f p i n 12

we read the input of digital pin 12. Note that the middle terminal of the
potentiometer is connected to this pin. The read value is displayed as a GUI
using the command,

5 cmd_arduino_meter (va l) ;

where val contains the potentiometer value acquired by the previous com-
mand. To encourage the user to have a good hands-on, we run these commands
in a for loop for 1000 iterations.

2. This experiment is an extension of the previous experiment. Here, we control
the state of an LED as per the status of the pushbutton. In other words, digital
output to an LED is decided by the digital input received from the pushbutton.
The code for this experiment is given in Scilab Code 5.2. After reading the
pushbutton status, we turn the LED on if the pushbutton is pressed, otherwise
we turn it off. The lines,

5 i f p==0
6 cmd_digital_out (1 , 9 , 0)
7 else
8 cmd_digital_out (1 , 9 , 1)
9 end

58 5. Interfacing a Pushbutton

Figure 5.2: Printing the push button status on the display block. This is what one
sees when Origin/user-code/push/scilab/push-button-status.zcos,
see Footnote 2 on page 2, is invoked.

perform the condition check and corresponding LED state control operation.

5.4 Accessing the Pushbutton from Xcos

In this section, we will see how to access the pushbutton from Scilab Xcos. We will
carry out the same two experiments as in the previous sections. For each, will give
the location of the zcos file and the parameters to set. The reader should go through
the instructions given in Sec. 3.3 before getting started.

1. First we will read the push button value and print it. When the file required
for this experiment is invoked, one gets the GUI as in Fig. 5.2. In the caption
of this figure, one can see where to locate the file.

As discussed in earlier chapters, we start with the initialization of the serial
port. Next, using Digital Read block, we read the status of potentiometer
connected on digital pin 12. The read values are displayed. When a user presses
the pushbutton, change in the logic value from low to high can be observed.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 5.1. All other
parameters are to be left unchanged.

5.4. Accessing the Pushbutton from Xcos 59

Table 5.1: Parameters to print the push button status on the display block

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_READ_SB Digital pin 12

Arduino card number 1
AFFICH_m Block inherits(1) or not (0) 1

Figure 5.3: Turning the LED on or off, depending on the pushbutton. This is what
one sees when Origin/user-code/push/scilab/led-push-button.zcos,
see Footnote 2 on page 2, is invoked.

2. In the second experiment, we take a step further and control the state of an
LED in accordance with the status of the pushbutton. The Xcos implemen-
tation for this experiment is shown in Fig. 5.3. Each time a user presses the
pushbutton, the LED on digital pin 9 of the shield is switched on. If the shield
is connected, the blue LED comes on. When button is released, the LED is
switched off. Here, we note that the digital logic level of the pin of the Arduino
Uno board connected to pushbutton changes only for the time the pushbutton
is being pressed.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 5.2. All other
parameters are to be left unchanged.

60 5. Interfacing a Pushbutton

Table 5.2: Xcos parameters to turn the LED on through the pushbutton

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DIGITAL_READ_SB Digital pin 12

Arduino card number 1
DIGITAL_WRITE_SB Digital pin 9

Card number 1

Exercise 5.1 Let us carry out the following exercise:

1. In the above experiment, we controlled only one LED upon pushbutton press.
Next, control multiple devices upon the pushbutton press. For example,
upon press, turn on an LED and a motor and turn them off upon release.

2. Control several devices depending on the number of pushbutton press in a
definite time span. For example, if the pushbutton is pressed once in time
’t’,say, turn on the LED. If it is pressed twice in time ’t’, turn on the motor.
Here, you may want to consider the timing between two consecutive press.

5.5 Arduino Code

Arduino Code 5.1 Read the status of the pushbutton and display it on the serial
monitor. Available at Origin/user-code/push/arduino/push-button-st
atus/push-button-status.ino, see Footnote 2 on page 2.

1 int sensorPin = 12 ; // D e c l a r e th e push−but ton
2 int sensorValue = 0 ;
3 void setup () {
4 S e r i a l . begin (115200) ;
5 pinMode (sensorPin , INPUT) ; // d e c l a r e th e s e n s o r P i n a s an INPUT
6 for (int i = 0 ; i < 1000 ; i++){
7 sensorValue = d ig i t a lRead (sensorPin) ; // r e ad push−but ton v a l u e
8 S e r i a l . p r i n t l n (sensorValue) ; // p r i n t i t a t th e S e r i a l Mon i to r
9 }

10 }
11 void loop () {

5.6. Scilab Code 61

12 }

Arduino Code 5.2 Turning the LED on or off depending on the pushbutton. Avail-
able at Origin/user-code/push/arduino/led-push-button/led-push
-button.ino, see Footnote 2 on page 2.

1 const int sensorPin = 12 ;
2 const int l edPin = 9 ;
3 int sensorValue ;
4 int i ;
5 void setup () {
6 S e r i a l . begin (115200) ;
7 pinMode (9 , OUTPUT) ;
8 pinMode (12 , INPUT) ;
9 for (i = 0 ; i < 1000 ; i++) {

10 sensorValue = d ig i t a lRead (12) ;
11 i f (sensorValue==0) {
12 d i g i t a lWr i t e (9 , LOW) ;
13 delay (5) ;
14 }
15 else {
16 d i g i t a lWr i t e (9 , HIGH) ;
17 delay (5) ;
18 }
19 }
20 }
21 void loop () {
22 }

5.6 Scilab Code

Scilab Code 5.1 Read the status of the pushbutton and displaying on the serial
monitor. Available at Origin/user-code/push/scilab/push-button-sta
tus.sce, see Footnote 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // p o r t 2 , baud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port , p l e a s e check ’) , end
3 for i =1:1000 // Run f o r 1000 i t e r a t i o n s
4 va l = cmd_digital_in (1 ,12) ; // Read th e s t a t u s o f p i n 12
5 cmd_arduino_meter (va l) ;
6 end
7 c l o s e_ s e r i a l (1) // To c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 5.2 Turning the LED on or off depending on the pushbutton. Avail-
able at Origin/user-code/push/scilab/led-push-button.sce, see Foot-
note 2 on page 2.

62 5. Interfacing a Pushbutton

1 ok=open_ser ia l (1 ,2 ,115200) ; // p o r t 2 , b aud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port , p l e a s e check ’) ; end
3 for i =1:1000 //Run f o r 1000 i t e r a t i o n s
4 p=cmd_digital_in (1 , 12)
5 i f p==0
6 cmd_digital_out (1 , 9 , 0)
7 else
8 cmd_digital_out (1 , 9 , 1)
9 end

10 end
11 c l o s e_ s e r i a l (1)

Chapter 6

Interfacing a Light Dependent
Resistor

A Light Dependent Resistor (LDR) or Photoresistor is a light sensitive semiconductor
device whose resistance varies with the variation in the intensity of light falling on
it. As the intensity of the incident light increases, resistance offered by the LDR
decreases. Typically, in dark, the resistance offered by an LDR is in the range of a
few mega ohms. With the increase in light intensity, the resistance reduces to as low
as a few ohms.

An LDR is widely used in camera shutter control, light intensity meters, burglar
alarms, street lighting control, automatic emergency lights, etc. In this chapter we
shall interface an LDR with the Arduino Uno board.

6.1 Preliminaries

A typical LDR and its symbolic representation are shown in Fig. 6.1a and Fig. 6.1b
respectively. The shield provided with the kit has an LDR mounted on it. The
LDR mounted on the shield looks exactly like the picture in Fig. 6.1a, although, the
picture looks a lot larger. This LDR is connected to the analog pin 5 of the Arduino
Uno board. The connections for this experiment are shown in Fig. 6.2. However,
the user doesn’t need to connect any wire or component explicitly.

The LDR mounted on the shield is an analog sensor. Hence, the analog voltage,
corresponding to the changing resistance, across its terminals needs to be digitized
before being sent to the computer. This is taken care of by an onboard Analog to
Digital Converter (ADC) of ATmega328 microcontroller on the Arduino Uno board.
ATmega328 has a 6-channel, 0 through 5, 10 bit ADC. Analog pin 5 of the Arduino
Uno board, to which the LDR is connected, corresponds to channel 5 of the ADC.

64 6. Interfacing a Light Dependent Resistor

(a) Pictorial representation of an LDR (b) Symbolic representation of an LDR

Figure 6.1: Light Dependent Resistor

Figure 6.2: Internal connection diagram for the LDR on the shield

As there are 10 bits, 0-5V readings from LDR are mapped to the ADC values from
0 to 1023.

LDR is a commonly available sensor in the market. It costs about Rs. 100.
There are multiple manufacturers which provide commercial LDRs. Some exam-
ples are VT90N1 and VT935G from EXCELITAS TECH, and N5AC501A085 and
NSL19M51 from ADVANCED PHOTONIX.

6.2. Arduino Experiments 65

6.2 Arduino Experiments

In this section, we shall learn to read the voltage values from an LDR connected to
the analog pin 5 of the Arduino Uno board. Later, the read values will be used to
change the state of an LED.

1. A simple code to read the LDR values is given in Arduino Code 6.1. As
discussed earlier, the 0-5V LDR readings are mapped to 0-1023 through an
ADC. The Arduino IDE based command for the analog read functionality is
given by,

6 val1=analogRead (A5) ; // v a l u e o f LDR

where A5 represents the analog pin 5 to be read and the read LDR values are
stored in the variable val1. The read values are then displayed using,

7 S e r i a l . p r i n t l n (va l1) ; // f o r d i s p l a y

The command, on line 8,

8 delay (500) ;

is given so that the readings do not scroll away very fast. The entire reading
and display operation is carried out 20 times.

To observe the values, one has to open the Serial Monitor of the Arduino
IDE. The numbers displayed are in the range 0 to 1023 and depend on the light
falling on the LDR. If one does the experiment in a completely dark room, the
reading will be 0. If on the other hand, a bright light, say for instance the
torch light from mobile, is shined, the value displayed is close to 1023. One
will get intermediate values by keeping one’s finger on the LDR.

2. In this experiment, depending the resistance of the LDR, we will turn the red
LED on. The program for this is available at Arduino Code 6.2. The value of
LDR is read and stored in val1, which is written on to the Serial Monitor.
In case it is above some threshold (it is 300 in the code), it puts a high in pin
number 11. From Sec. 4.1, one can see that this pin is for the red LED. If the
LDR value is about 300, the red LED will be on, else, it will be turned off.
This loop is repeated 2,000 times.

Exercise 6.1 Carry out the following exercise:

1. Carry out the experiment in a dark room and check what values get displayed
on the Serial Monitor.

66 6. Interfacing a Light Dependent Resistor

2. Carry out the experiment with the torch light from the mobile phone shining
on the LDR.

6.3 Scilab Experiments

In this section, we will explain a few Scilab experiments to read the LDR values
corresponding to the incident light. The LDR values can be read using the following
function of Scilab Arduino toolbox:

cmd_analog_in (1 , port number on Arduino Uno)

where the input argument 1 is fixed for this kit, and the port number corresponds
to the analog pin of Arduino Unothat needs to be read. We will carry out two
experiments using Scilab.

1. We use Scilab Code 6.1 to read the LDR values. We find the port number from
the computer settings and give it as input to the open_serial command to
start serial port communication. In our case, the port number is 2. Next, we
shall fetch LDR values using the command, cmd_analog_in, as explained
above. This is indicated on line 4 of the code. We run this command in a for
loop 20 times. In each iteration of the for loop, we acquire LDR data fed
to analog pin 5, display it in the Scilab command window and suspend Scilab
operation for 500 milliseconds. The output of this experiment is displayed on
the Scilab command window. After reading the values, we close the serial port
using the command, close_serial, of Scilab-Arduino toolbox.

2. In this experiment, we will observe the saturation point of LDR, see Scilab Code 6.2.
We know that as incident light intensity increases, voltage at analog input of
the Arduino Uno board increases. Thus the ADC values being read by the
Arduino Uno board also increase. But after certain high intensity, ADC values
reach its maximum. For 10 bit ADC in Arduino, this high intensity corre-
sponds to 1023. Beyond this value, the LDR is incapable of sensing the change
in light intensity and is considered to be saturated. To observe this saturation
point, we can do a simple task of exposing LDR to high intensity. We can put
a torch/light source sensor to close proximity of LDR.

Exercise 6.2 Carry out the exercise below:

1. Carry out the exercise in the previous section

6.4. LDR experiments through Xcos 67

Figure 6.3: Xcos diagram to read LDR values. This is what one sees when Ori
gin/user-code/ldr/scilab/ldr-read.zcos, see Footnote 2 on page 2, is
invoked.

2. Calculate the difference in LDR readings in indoor room before lighting the
lamp and after lighting the lamp. You can also record changes in the room
lighting at different times of the day.

6.4 LDR experiments through Xcos

Next, we shall perform the above mentioned experiment, to read LDR values, through
Xcos. We will carry out the same four experiments as in the previous sections. For
each, will give the location of the zcos file and the parameters to set. The reader
should go through the instructions given in Sec. 3.3 before getting started.

1. The Xcos diagram in Fig. 6.3 performs data acquisition from analog pin 5
and displays the read values on the scope. When the file required for this
experiment is invoked, one gets the GUI as in Fig. 6.3. In the caption of this
figure, one can see where to locate the file.

68 6. Interfacing a Light Dependent Resistor

Table 6.1: Xcos parameters to read LDR

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
ANALOG_READ_SB Analog Pin 5

Arduino card number 1
CSCOPE Ymin 0

Ymax 1023
Refresh period 100

CLOCK_c Period 0.1
Initialisation Time 0

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 6.1. All other
parameters are to be left unchanged.

During this experiment, we vary the light incident on LDR by using several
light sources and obstacles such as torch light, paper, hand, etc. and observe
the LDR readings. We observe that with a constant light source, the LDR
output saturates after some time.

2. In the second experiment, we read the value of the LDR and using it, turn the
red LED on or off. When the file required for this experiment is invoked, one
gets the GUI as in Fig. 6.4. In the caption of this figure, one can see where to
locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 9.2. In the
CSCOPE_c block, the two values correspond to two graphs, one for digital
write and other for analog read values. All other parameters are to be left
unchanged.

6.5 Arduino Code

Arduino Code 6.1 Read and display the LDR values. Available at Origin/use
r-code/ldr/arduino/ldr-read/ldr-read.ino, see Footnote 2 on page 2.

6.5. Arduino Code 69

Figure 6.4: Xcos diagram to read the value of the LDR, which is used to turn the
blue LED on or off. This is what one sees when Origin/user-code/ldr/scil
ab/ldr-led-xcos.zcos, see Footnote 2 on page 2, is invoked.

1 int val1 ; // f o r LDR
2 int i =1;
3 void setup () {
4 S e r i a l . begin (115200) ;
5 for (i =1; i <=20; i++){
6 val1=analogRead (A5) ; // v a l u e o f LDR
7 S e r i a l . p r i n t l n (va l1) ; // f o r d i s p l a y
8 delay (500) ;
9 }

10 }
11 void loop () {
12 }

Arduino Code 6.2 Turning the red LED on and off. Available at Origin/user
-code/ldr/arduino/ldr-led/ldr-led.ino, see Footnote 2 on page 2.

1 int val1 ;
2 int i =1;
3 void setup () {
4 pinMode (11 ,OUTPUT) ; // LED Pin
5 S e r i a l . begin (115200) ;
6 for (i =1; i <=2000; i++){
7 val1=analogRead (A5) ; // Value o f LDR

70 6. Interfacing a Light Dependent Resistor

Table 6.2: Xcos parameters to read LDR and regulate blue LED

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
ANALOG_READ_SB Analog pin 5

Arduino card number 1
CMSCOPE Ymin 0 0

Ymax 1 1023
Refresh period 100 100

CLOCK_c Period 0.1
Initialisation time 0

SWITCH2_m Datatype 1
threshold 300
pass first input if field 0
use zero crossing 1

DIGITAL_WRITE_SB Digital pin 9
Arduino card number 1

8 S e r i a l . p r i n t l n (va l1) ;
9 i f (val1 <300){ // Th r e sho l d

10 d i g i t a lWr i t e (11 ,HIGH) ;
11 }
12 else
13 {
14 d i g i t a lWr i t e (11 ,LOW) ;
15 }
16 }
17 }
18 void loop () {
19 }

6.6 Scilab Code

Scilab Code 6.1 Read and display the LDR values. Available at Origin/user-
code/ldr/scilab/ldr-read.sce, see Footnote 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // Por t 2 w i th baud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port . P lease check ’) end
3 for i =1:20 // Run f o r 20 i t e r a t i o n s

6.6. Scilab Code 71

4 p=cmd_analog_in (1 , 5) ; // r e ad an a l o g p in 5 (l d r)
5 di sp (p) ;
6 s l e e p (500) // De lay o f 500 m i l l i s e c o n d s
7 end
8 c = c l o s e_ s e r i a l (1) // c l o s e s e r i a l c o n n e c t i o n

Scilab Code 6.2 Turning the blue LED on and off. Available at Origin/user-
code/ldr/scilab/ldr-led.sce, see Footnote 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // p o r t 2 , b aud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port , p l e a s e check ’) ; end
3 for i =1:500 //Run f o r 500 i t e r a t i o n s
4 p=cmd_analog_in (1 , 5) // r e ad an a l o g p in 5 (l d r)
5 di sp (p) ;
6 i f (p<300) // S e t t i n g Th r e s ho l d v a l u e o f 300
7 cmd_digital_out (1 , 9 , 1) // Turn ON LED
8 else
9 cmd_digital_out (1 , 9 , 0) // Turn OFF LED

10 end
11 end
12 c l o s e_ s e r i a l (1)

72 6. Interfacing a Light Dependent Resistor

Chapter 7

Interfacing a DC motor

Motors are widely used in commercial applications. DC motor converts electric
power obtained from direct current to the mechanical motion. This chapter describes
an experiment to control DC motor with Arduino Uno board. We will observe the
direction of motion of DC motor being changed using the microcontroller on Arduino
Uno board. Control instruction will be sent to Arduino Uno using Scilab scripts,
Arduino IDE and Scilab Xcos.

7.1 Preliminaries

In order to change its direction, the sign of the voltage applied to the DC motor is
changed. For that, one needs to use external hardware called H-Bridge circuit DC
motor with Arduino Uno. H-Bridge allows direction of the current passing through
the DC motor to be changed. It avoids the sudden short that may happen while
changing the direction of current passing through the motor. It is one of the essential
circuits for the smooth operation of a DC motor. There are many manufacturers
of H-bridge circuit viz. L293D, L298, etc. Often they provide small PCB breakout
boards. These modules also provide an extra supply that is needed to drive the DC
motor. Fig. 7.1 shows the diagram of a typical breakout board containing IC L293D,
which will be used in this book.

Input from Arduino Uno to H-bridge IC is in pulse width modulation (PWM)
form. PWM is a technique to generate analog voltages using digital pins. We know
that Arduino Uno has digital input-output pins. When these pins are configured
as an output, they provide High (5V) or Low (0V) voltage. With PWM technique,
these pins are switched on and off iteratively and fast enough so that the voltage is
averaged out to some analog value in between 0-5V. This analog value depends on
”switch-on” time and ”switch-off” time. For example, if both ”switch-on” time and

74 7. Interfacing a DC motor

Figure 7.1: L293D motor driver board

”switch-off” time are equal, average voltage on PWM pin will be 2.5V. To enable fast
switching of digital pin, a special hardware is provided in microcontrollers. PWM
is considered as an important resource of the microcontroller system. Arduino Uno
board has 6 PWM pins for each of which, the input can come from 8 bits. Thus we
can generate 256 different analog values in between 0-5V with these pins.

We now carry out the following connections:

1. Connect input of L293D (M1_IN) pins to two of the PWM pins available on
Arduino Uno. We have used pins 9 and 10 of the Arduino Uno board.

2. Connect the output of the L293D (M1_OUT) pins directly to the 2 wires of
the DC motor. As the direction is changed during the operation, the polarity
of the connection does not matter.

3. Connect supply (Vcc) and ground (Gnd) pins of L293D to 5V and Gnd pins
of the Arduino Uno board, respectively.

A schematic of these connections is given in Fig. 7.2. The actual connections can be
seen in Fig. 7.3.

7.2. Controlling the DC motor from Arduino 75

Figure 7.2: A schematic of DC motor connections

Figure 7.3: How to connect the DC motor to the Arduino Uno board

7.2 Controlling the DC motor from Arduino

In this section, we will describe some experiments that will help drive the DC motor
from the Arduino IDE. We will also give the necessary code. We will present four

76 7. Interfacing a DC motor

experiments in this section. We assume the shield to be attached to the Arduino Uno
board while doing these experiments. The reader should go through the instructions
given in Sec. 3.1 before getting started.

1. We now demonstrate how to drive the DC motor from the Arduino IDE. Ar-
duino Code 7.1 has the required code for this. It starts the serial port at a
baud rate of 9600. Pins 9 and 10 are declared as output pins and hence values
can be written on to them. Next, we write PWM 100 on pin 9 and PWM 0 on
pin 10. Recall from Fig. 7.3 that pins 9 and 10 are connected to the input of
the breakout board, which in turn makes the DC motor run at an intermediate
speed. Recall from Sec. 4.1 that a high on pin 9 also makes the blue LED come
on. As a result, the blue LED also lights up.
Some of the breakout boards may not have enough current driving capability
and hence tend to heat up. To avoid these difficulties, the DC motor is run at
an intermediate value of PWM 100.
The line containing delaymakes the previous command execute for 3 seconds.
As a result, the DC motor continues to rotate for 3 seconds. After this, as we
put a 0 in both pins 9 and 10, the motor comes to a halt. The blue LED is
also turned off.

2. It is easy to make the DC motor run in the reverse direction by interchanging
the values put on pins 9 and 10. This is done in Arduino Code 7.2. In this
program, we make the DC motor run in one direction for 3 seconds and then
make it rotate in the reverse direction for 2 seconds. The rotation in reverse
direction is achieved by putting 100 in pin 10. This makes the green LED
light up, recall the discussion in Sec. 4.1. After that, we release the motor by
writing 0 in both pins 9 and 10. This turns the green LED off.

3. Next, we make the DC motor run in forward and reverse directions, in a loop.
This is done through Arduino Code 7.3. We first put PWM 100 in the motor
for 3 seconds. After that, make the motor stop for 2 seconds. Finally, make the
motor rotate in the reverse direction by putting PWM -100 for two seconds.
Finally, we make the motor stop for one second. The entire thing is put in a
loop.

Exercise 7.1 Carry out the following exercise:

1. Try out some of the suggestions given above, i.e., removing certain numbers
from the code

2. See if the DC motor runs if you put 1 instead of 100 as the PWM value.
Explain why it does not run. Find out the smallest value at which it will
start running.

7.3. Controlling the DC motor from Scilab 77

7.3 Controlling the DC motor from Scilab

In this section, we will explain a few experiments to rotate the DC motor. We will
first initialize it and then rotate it clockwise and counterclockwise. We will explain
some of the other required commands, such as sleep.

7.3.1 Initialization

In all the experiments in this section, we need to initialize the DC motor first, using
a Scilab command of the following type:

cmd_dcmotor_setup (1 ,H−Bridge type , Motor number ,PWM pin 1 ,PWM pin 2)

As mentioned earlier, number 1 in the above list refers to the Arduino Uno board.
We now discuss how to choose values for the other parameters in this command. As
mentioned above, there are many H-bridge IC manufacturers. The inbuilt function
cmd_dcmotor_setup can work with most of the widely used ICs, through a suit-
able input parameter. Users have to provide the type number of the breakout board
they have. Popular numbering convention for different types of DC motor breakout
boards is given in Table 7.1. For example, L293D is type 3. Next, we have to provide
the motor number we want to control. In our case, it is number 1. Finally we want
to provide PWM pin numbers on Arduino Uno. As mentioned earlier, we are using
pins 10 and 11. In Table 7.2, we list the choices that we have made. Inserting these
parameter values in the above shown Scilab command, we get the following command

2 cmd_dcmotor_setup (1 , 3 , 1 , 9 , 10) // Setup DC motor o f t ype 3 (L293D) ,
motor 1 , p i n 9 and 10

which is line number 2 in Scilab Code 7.1. We have already seen the first two lines
of this code and hence will not explain here. We will add more lines to this code as
we go along.

7.3.2 Rotation for a specified time

We will now explain how to run the DC motor. We have to provide motor number
and the PWM value. The Scilab command is of the form,

cmd_dcmotor_run (1 ,Motor number , (s i gn) (PWM value))

78 7. Interfacing a DC motor

Table 7.1: A numbering convention used in the DC motor breakout board

DC Motor Type Number
MotorShield Rev3 1
PMODHB5/L298 2

L293D 3

Table 7.2: Parameters for DC motor initialization

Parameter Value
H-Bridge type 3
Motor number 1
PWM 1 pin 9
PWM 2 pin 10

Motor number is 1, as mentioned earlier. Considering that the input to a PWM
pin comes from two 8 digital pins, we can provide values between −255 and +255.
Positive values correspond to clockwise rotation while negative values correspond
to anti-clockwise rotation. Based on the PWM value and polarity, corresponding
analog voltage is generated. We put a PWM value of 100 to make the DC motor to
run at an intermediate speed. Assigning these values, we get the following command:

3 cmd_dcmotor_run (1 ,1 , 100) // Motor 1 run s a t PWM 100

This is line number 3 in Scilab Code 7.1. This command does not say for how long
the motor should run. This is taken care of by the sleep statement. The units of
sleep are milliseconds. For example, line number 4 of Scilab Code 7.1, given next,
says that Scilab should go to sleep for three seconds.

4 s l e e p (3000) // Th i s i s a l l ow e d to c o n t i n u e f o r 3 s e c o nd s

Line number 5 of Scilab Code 7.1, shown below, is mandatory for every program.
5 cmd_dcmotor_release (1 , 1) // Motor 1 i s r e l e a s e d

It releases the DC motor. The PWM functionality on the Arduino Uno pins is ceased
using this command. This has the motor number as an input parameter.

If the sleep command discussed above were not present, the DC motor will not
even run: soon after putting the value 100, the DC motor would be released, leaving
no time in between. If on the other hand, the DC motor is not released (i.e.,
line number 6 being absent), the DC motor will go on rotating. Line number 6 of
Scilab Code 7.1 closes the serial port.

We encourage you to run the above code without either line numbers 4, 5 or
6 or all combinations. Go ahead and do it - you will not break anything. At the

7.4. Driving the DC motor from Xcos 79

most, you may have to unplug the USB cable and restart the whole thing from the
beginning.

Scilab Code 7.1 can easily be extended to make the DC motor run in both
directions. The modified code is available in Scilab Code 7.2.

Exercise 7.2 Carry out the following exercise:

1. Try out some of the suggestions given above, i.e., removing certain numbers
from the code

2. See if the DC motor runs if you put 1 instead of 100 as the PWM value.
Explain why it does not run. Find out the smallest value at which it will
start running.

7.3.3 Using the capabilities of Scilab

Given that Scilab has a powerful programming syntax, a lot of different experiments
can be tried out. We illustrate a few in this section. We begin with a for loop.

In the previous section, we presented Scilab Code 7.2, where we made the motor
run in both directions, five seconds in the clockwise direction and two seconds in
reverse. This code can be embedded in a loop and the motor be made to repeat a
certain number of times. This idea is implemented through Scilab Code 7.3. Through
the for loop in between line numbers 3 and 8, we make the DC motor repeat four
times the cycle containing one rotation in each direction.

It is not difficult to see how some of the other features of the Scilab programming
language can be used along with this DC motor. For example, it is possible to read
a temperature value and based on its value, start or stop the motor. For real world
applications, one has to provide extra current carrying capabilities through external
hardware.

7.4 Driving the DC motor from Xcos

In this section, we will see how to drive the DC motor from Xcos. For each experi-
ment, we will give the location of the zcos file and the parameters to set. The reader
should go through the instructions given in Sec. 3.3 before getting started. If the
rotation of the DC motor is blocked by any obstacle in any of the experiments given
below, you may want to hold it in your hand and let it run unhindered.

80 7. Interfacing a DC motor

Figure 7.4: Control of DC motor for a specified time from Xcos. This is what
one sees when Origin/user-code/dcmotor/scilab/dcmotor-clock.zco
s, see Footnote 2 on page 2, is invoked.

1. First we will see a simple code that drives the DC motor for a specified time.
When the file required for this experiment is invoked, one gets the GUI as in
Fig. 7.4. In the caption of this figure, one can see where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 7.3. In case of
DCMOTOR_SB, enter 3 to indicate for L293D board. After clicking on OK,
another box will pop up. In that, enter the PWM pin numbers as 9 and 10
and click OK. All other parameters are to be left unchanged.

2. Next, we will describe the Xcos code that drives the DC motor in both forward
and reverse directions. When the file required for this experiment is invoked,
one gets the GUI as in Fig. 7.5. In the caption of this figure, one can see where
to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 7.4. All other
parameters are to be left unchanged.

3. Next, we will describe the Xcos code that drives the DC motor in a loop. When
the file required for this experiment is invoked, one gets the GUI as in Fig. 7.6.

7.4. Driving the DC motor from Xcos 81

Table 7.3: Xcos parameters to drive the DC motor for a specified time

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DCMOTOR_SB Type of Shield 3

Arduino card number 1
PWM pin numbers 9 10
Motor number 1

STEP_FUNCTION Step time 5
Initial Value 100
Final Value 0

Figure 7.5: Xcos control of the DC motor in forward and reverse directions. This is
what one sees when Origin/user-code/dcmotor/scilab/dcmotor-both.
zcos, see Footnote 2 on page 2, is invoked.

In the caption of this figure, one can see where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 7.5. All other
parameters are to be left unchanged.

82 7. Interfacing a DC motor

Table 7.4: Xcos parameters to drive the DC motor in forward and reverse directions

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DCMOTOR_SB Type of Shield 3

Arduino card number 1
PWM pin numbers 9 10
Motor number 1

STEP_FUNCTION Step time 5
Initial Value 100
final value 0

CLOCK_c Period 1
Initialisation Time 0.1

Figure 7.6: Xcos control of the DC motor in forward and reverse directions. This is
what one sees when Origin/user-code/dcmotor/scilab/dcmotor-loop.
zcos, see Footnote 2 on page 2, is invoked.

Exercise 7.3 Carry out the following exercise:

1. Keep reducing the PWM value and find out the minimum value required to
run the DC motor. Is this value in agreement with what we found in the

7.5. Arduino Code 83

Table 7.5: Xcos parameters to drive the DC motor in a loop

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
DCMOTOR_SB Type of Shield 3

Arduino card number 1
PWM pin numbers 9 10
Motor number 1

STEP_FUNCTION 1 Step time 3
Initial Value 100
Final Value 0

STEP_FUNCTION 2 Step time 5
Initial Value 0
Final Value 100

STEP_FUNCTION 3 Step time 7
Initial Value 0
Final Value 100

BIGSOM_f Inputs ports signs/gain [1;-1;1]

previous section?

2. Change the PWM value to −100 and check if the DC motor rotates in the
opposite direction.

3. Find out the smallest PWM value required to make the motor run in the
opposite direction. That is, find the least count for both directions.

4. Come up with a method to rotate the motor in two directions for different
time periods.

7.5 Arduino Code

Arduino Code 7.1 Rotating the DC motor. Available at Origin/user-code
/dcmotor/arduino/dcmotor-clock/dcmotor-clock.ino, see Footnote 2
on page 2.

84 7. Interfacing a DC motor

1 void setup () {
2 S e r i a l . begin (9600) ; // s e t th e baud r a t e =9600
3 pinMode (9 ,OUTPUT) ; // u s e p i n s 9 and 10 f o r motor ou tpu t
4 pinMode (10 ,OUTPUT) ;
5 analogWrite (9 ,100) ; // PWM 100 on p in 9 makes th e motor r o t a t e
6 analogWrite (10 ,0) ;
7 delay (3000) ; // Th i s i s a l l ow e d to c o n t i n u e f o r 3 s e c o nd s
8 analogWrite (9 , 0) ; // 0 on p in 9 s t o p s th e motor
9 analogWrite (10 ,0) ;

10 }
11 void loop () {
12 // what i s put h e r e w i l l run i n an i n f i n i t e l o o p
13 }

Arduino Code 7.2 Rotating the DC motor in both directions. Available at Ori
gin/user-code/dcmotor/arduino/dcmotor-both/dcmotor-both.ino,
see Footnote 2 on page 2.

1 void setup () {
2 S e r i a l . begin (115200) ; // s e t th e baud r a t e =115200
3 pinMode (9 ,OUTPUT) ; // u s e p i n s 10 and 11 f o r motor ou tpu t
4 pinMode (10 ,OUTPUT) ;
5 analogWrite (9 ,100) ; // Motor run s a t a low sp e ed
6 analogWrite (10 ,0) ;
7 delay (3000) ; // 3 s e c ond d e l a y
8 analogWrite (9 , 0) ; //
9 analogWrite (10 ,100) ; // Motor run s i n th e r e v e r s e d i r e c t i o n f o r

10 delay (2000) ; // 2 s e c o n d s
11 analogWrite (9 , 0) ; // Motor i s s t opp ed
12 analogWrite (10 ,0) ; //
13 }
14 void loop () {
15 // Code h e r e run s i n an i n f i n i t e l o o p
16 }

Arduino Code 7.3 Rotating the DC motor in both directions in a loop. Available
at Origin/user-code/dcmotor/arduino/dcmotor-loop/dcmotor-loop
.ino, see Footnote 2 on page 2.

1 int i ;
2 void setup () {
3 S e r i a l . begin (115200) ; // s e t th e baud r a t e =115200Hz
4 pinMode (9 ,OUTPUT) ; // u s e p i n s 9 and 10 f o r motor ou tpu t
5 pinMode (10 ,OUTPUT) ;
6 for (i =0; i <4; i++){
7 analogWrite (9 ,100) ; // Motor run s a t a low sp e ed
8 analogWrite (10 ,0) ;
9 delay (3000) ; // 3 s e c ond d e l a y

7.6. Scilab Code 85

10 analogWrite (9 , 0) ;
11 analogWrite (10 ,0) ; // Motor s t o p s f o r
12 delay (2000) ; // 1 s e c o n d s
13 analogWrite (9 , 0) ; //
14 analogWrite (10 ,100) ; // Motor run s i n th e r e v e r s e d i r e c t i o n f o r
15 delay (2000) ; // 2 s e c o n d s
16 analogWrite (9 , 0) ; // Stop the
17 analogWrite (10 ,0) ; // motor r o t a t i n g
18 delay (1000) ; // f o r 1 s e c ond
19 }
20 }
21 void loop () {
22 }

7.6 Scilab Code

Scilab Code 7.1 Rotating the DC motor. Available at Origin/user-code/dc
motor/scilab/dcmotor-clock.sce, see Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,4 ,115200) //COM po r t i s 4 and baud r a t e i s 115200
2 cmd_dcmotor_setup (1 , 3 , 1 , 9 , 10) // Setup DC motor o f t ype 3 (L293D) ,

motor 1 , p i n 9 and 10
3 cmd_dcmotor_run (1 ,1 , 100) // Motor 1 run s a t PWM 100
4 s l e e p (3000) // Th i s i s a l l ow e d to c o n t i n u e f o r 3 s e c o nd s
5 cmd_dcmotor_release (1 , 1) // Motor 1 i s r e l e a s e d
6 c l o s e_ s e r i a l (1)

Scilab Code 7.2 Rotating DC motor in both directions. Available at Origin/us
er-code/dcmotor/scilab/dcmotor-both.sce, see Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,4 ,115200) //COM po r t i s 4 and baud r a t e i s 115200
2 cmd_dcmotor_setup (1 , 3 , 1 , 10 , 11) // Setup DC motor o f t ype 3 (L293D) ,

motor 1 , p i n 9 and 10
3 cmd_dcmotor_run (1 ,1 , 100) // Motor 1 run s a t PWM 100
4 s l e e p (3000) // f o r 3 s e c o nd s
5 cmd_dcmotor_run(1 ,1 ,−100) // Motor 1 run s a t PWM −100 i n r e v e r s e
6 d i r e c t i o n
7 s l e e p (2000) // f o r 2 s e c o nd s
8 cmd_dcmotor_release (1 , 1) // Motor 1 i s r e l e a s e d
9 c l o s e_ s e r i a l (1)

Scilab Code 7.3 Rotating the DC motor in both directions in a loop. Available at
Origin/user-code/dcmotor/scilab/dcmotor-loop.sce, see Footnote 2
on page 2.

1 ok = open_ser ia l (1 ,4 ,115200) //COM po r t i s 4 and baud r a t e i s 115200
2 i f ok~=0, e r r o r (’ S e r i a l port i s not a c c e s i b l e ’) ; end

86 7. Interfacing a DC motor

3 cmd_dcmotor_setup (1 , 3 , 1 , 9 , 10) // Setup DC motor o f t ype 3 (L293D) ,
motor 1 , p i n s 9 and 10

4 for x=1:4
5 cmd_dcmotor_run (1 ,1 , 100) // Motor 1 run s a t PWM 100
6 s l e e p (3000) // f o r 3 s e c o nd s
7 cmd_dcmotor_run (1 , 1 , 0) // Ha l t th e motor
8 s l e e p (2000) // f o r 2 s e c o nd s
9 cmd_dcmotor_run(1 ,1 ,−100) // Run i t a t PWM 100 i n r e v e r s e d i r e c t i o n

10 s l e e p (2000) // f o r 2 s e c o nd s
11 end
12 cmd_dcmotor_release (1 , 1) // Motor 1 i s r e l e a s e d
13 c l o s e_ s e r i a l (1)

Chapter 8

Interfacing a Potentiometer

A potentiometer is a three-terminal variable resistor with two terminals connected
to the two ends of a resistor and one connected to a sliding or rotating contact,
termed as a wiper. The wiper can be moved to vary the resistance, and hence the
potential, between the wiper and each terminal of the resistor. Thus, a potentiometer
functions as a variable potential divider. It finds wide application in volume control,
calibration and tuning circuits, motion control, joysticks, etc.

In this chapter, we will perform an experiment to read the analog values from
a potentiometer mounted on the shield of Arduino Uno board. The analog values
read from the potentiometer will then be used to control the actuation of other
components.

8.1 Preliminaries

The shield provided with the kit has a 1K potentiometer mounted on it. The me-
chanical contact at the middle terminal is rotated to vary the resistance across the
middle terminal and the two ends of the potentiometer. With the fixed voltage
across the two terminals of the potentiometer, the position of the wiper determines
the potential across the middle terminal and either of the two end terminals. Nowa-
days, digital potentiometer integrated circuits, which vary resistance across two pins
on the basis of the set value, are also available.

The potentiometer used in the kit can be seen on the shield in Fig. 4.3 on page 42.
It is mounted on the shield. The two end terminals of the potentiometer are con-
nected to 5V supply and ground. The middle terminal is connected to analog pin 2
of the Arduino Uno board. The resistance between the middle terminal and either of
the two ends can be varied by rotating the middle terminal by hand. The connection
diagram for the potentiometer is shown in Fig. 8.1.

88 8. Interfacing a Potentiometer

(a) Pictorial representation of a potentiometer (b) Schematic representation of the poten-
tiometer

Figure 8.1: Potentiometer’s schematic on the shield

The reading of a potentiometer is an analog voltage varying from 0 to 5V. As
for LDR, we use the ADC functionality of the Arduino Uno board. Thus, we obtain
digital values between 0 and 1023 in Scilab Console or Arduino Serial Monitor. In the
experiment explained in this chapter, we shall also use an RGB LED mounted on the
shield. An RGB LED is a tri-color LED which can illuminate in Red, GREEN and
Blue colors. It has 4 leads of which one lead is connected to ground and other three
leads are connected to digital I/O pins 9,10 and 11 of Arduino. In order to switch
on a particular LED, we need to provide HIGH(5V) voltage to the corresponding
pin of the Arduino Uno board.

8.2 Reading the potentiometer from the Arduino IDE

In this section, we shall learn to read the potentiometer input through Arduino IDE.
Depending on the acquired potentiometer values, we will change the state of RGB
LED. The Arduino code for this experiment is given in Arduino Code 8.1. Lines
1 through 4 are used to assign relevant pin numbers to potentiometer and RGB
LED. The purpose of these lines is to avoid confusion, with the pin numbers, for the
beginners. Next, we start serial port communication, as on line 9, with the baud
rate of 115,200 bps. In order to take the potentiometer input, we need to initialize
the pins by giving the following commands:

8.3. Reading the potentiometer from Scilab Script 89

10 pinMode (RGB_RED,OUTPUT) ;
11 pinMode (RGB_GREEN,OUTPUT) ;
12 pinMode (RGB_BLUE,OUTPUT) ;
13 for (i =0; i <10; i++){

where pinMode command is used to configure the specified pin as an input
or an output pin. The first argument for the above command corresponds to the
pin number and second argument corresponds to the mode of operation. In this
experiment, we configure digital pin 2 as an input pin while digital pins 9, 10, and
11 as output pins. Next, we check the value of potentiometer using analogRead
command 10 iterations. These values range from 0 to 1023. Depending on the read
value, we turn on and turn off the Red, Green or Blue LED. For example, when
the position of the potentiometer corresponds to the values between 0 and 319,
inclusive, we turn on the Red LED, keep it on for 1000 ms and then turn it off. This
functionality is carried out by,

18 d i g i t a lWr i t e (RGB_RED,LOW) ;
19 } else i f (p>=320 &p<=900) { // t h r e s h o l d 2
20 d i g i t a lWr i t e (RGB_GREEN,HIGH) ;
21 delay (1000) ;
22 d i g i t a lWr i t e (RGB_GREEN,LOW) ;

In a similar manner, we check the potentiometer values and correspondingly turn on
and off the Green and Blue LEDs. Note that, we used if and else if statements
to check the conditions and rotated the potentiometer knob to vary the resistance.

8.3 Reading the potentiometer from Scilab Script

In this section, we will use a Scilab script to read the potentiometer values. Based
on the acquired potentiometer values, we will change the state of the RGB LED. As
explained earlier, the potentiometer values range from 0 to 1023. We will divide this
entire range into 3 bands, 0-319, 320-900, and 901-1023. For each read value, we
use an if elseif statement and correspondingly turn on either the Red, Green
or Blue LED. The code for this experiment is given in Scilab Code 8.1. We start the
experiment by opening the serial port for communication between Scilab and the
Arduino Uno board. Then, we read the analog input at pin 2 using,

4 p=cmd_analog_in (1 , 2)

where the first argument is for the kit number and the second argument corresponds
to the analog pin to be read. Next, we compare the read values with the set range,
and then turn on and off the corresponding LED. For example,

8 cmd_digital_out (1 , 11 , 0)
9 e l s e i f p>=320 &p<=900 // t h r e s h o l d 2

90 8. Interfacing a Potentiometer

Figure 8.2: Turning LEDs on through Xcos depending on the potentiometer thresh-
old. This is what one sees when Origin/user-code/pot/scilab/pot-thre
shold.zcos, see Footnote 2 on page 2, is invoked.

10 cmd_digital_out (1 , 10 , 1)
11 s l e e p (1000)
12 cmd_digital_out (1 , 10 , 0)

where cmd_digital_out is used to set the pin 11 high (1) or low (0). We used
sleep(1000) to retain the LED in the on state for 1000 milliseconds. A similar
check is done the other two bands. Note that we need to vary the resistance by
rotating the knob of the potentiometer.

8.4 Reading the potentiometer from Scilab Xcos

In this section, we discuss how to perform the experiment explained above. When
the file required for this experiment is invoked, one gets the GUI as in Fig. 8.2. In
the caption of this figure, one can see where to locate the file. The reader should go
through the instructions given in Sec. 3.3 before getting started.

The block, Analog Read Pin 2, performs the read operation from pin 2. The
threshold is set using the block, Dynamic. Depending on the condition met, a 1 or
0 is given to pin 9, 10 or 11.

8.4. Reading the potentiometer from Scilab Xcos 91

Table 8.1: Xcos parameters to turn on different LEDs depending on the potentiome-
ter value

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
CONST_m Constant Value 1, 0
DIGITAL_WRITE_SB Digital Pin 9(blue)

Digital Pin 10(green)
Digital Pin 11(red)
Arduino card number 1

ANALOG_READ_SB analog pin 2
Arduino card number 1

SWITCH2_m Datatype 1
Pass first input 1
threshold 0
use zero crossing 1

SWITCH2_m Datatype 1
Pass first input 0
threshold 320
use zero crossing 1

SWITCH2_m Datatype 1
Pass first input 0
threshold 900
use zero crossing 1

RELATIONALOP Operator 4
zero crossing 0
Datatype 1

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or double
click. The values for each block is tabulated in Table 8.1. All other parameters are
to be left unchanged.

Note that, when the potentiometer value read by Scilab crosses either of the
thresholds, color of the LED changes. This can be observed by rotating the poten-
tiometer.

92 8. Interfacing a Potentiometer

8.5 Exercise

1. List out the applications in day to day life where potentiometer is being used/-
can be used? For example, old fan regulators used potentiometer to change
the fan speed.

8.6 Arduino Code

Arduino Code 8.1 Turning on LEDs depending on the potentiometer threshold.
Available at Origin/user-code/pot/arduino/pot-threshold/pot-thre
shold.ino, see Footnote 2 on page 2.

1 const int POT = 2 ;
2 const int RGB_RED = 11 ;
3 const int RGB_GREEN = 10 ;
4 const int RGB_BLUE = 9 ;
5 int p=0;
6 int i =0;
7 void setup () {
8 S e r i a l . begin (115200) ;
9 pinMode (POT,INPUT) ;

10 pinMode (RGB_RED,OUTPUT) ;
11 pinMode (RGB_GREEN,OUTPUT) ;
12 pinMode (RGB_BLUE,OUTPUT) ;
13 for (i =0; i <10; i++){
14 p = analogRead (POT) ;
15 i f (p>=0 & p<320) { // t h r e s h o l d 1
16 d i g i t a lWr i t e (RGB_RED,HIGH) ;
17 delay (1000) ;
18 d i g i t a lWr i t e (RGB_RED,LOW) ;
19 } else i f (p>=320 &p<=900) { // t h r e s h o l d 2
20 d i g i t a lWr i t e (RGB_GREEN,HIGH) ;
21 delay (1000) ;
22 d i g i t a lWr i t e (RGB_GREEN,LOW) ;
23 } else i f (p>900 & p<=1023) { // t h r e s h o l d 3
24 d i g i t a lWr i t e (RGB_BLUE,HIGH) ;
25 delay (1000) ;
26 d i g i t a lWr i t e (RGB_BLUE,LOW) ;
27 }
28 }
29 }
30 void loop () {
31 }

8.7. Scilab Code 93

8.7 Scilab Code

Scilab Code 8.1 Turning on LEDs depending on the potentiometer threshold. Avail-
able at Origin/user-code/pot/scilab/pot-threshold.sce, see Foot-
note 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // p o r t 2 , baud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port , p l e a s e check ’) , end
3 for x=1:10 //Run f o r 10 i t e r a t i o n s
4 p=cmd_analog_in (1 , 2)
5 i f (p>=0 & p<320) then // t h r e s h o l d 1
6 cmd_digital_out (1 , 11 , 1)
7 s l e e p (1000)
8 cmd_digital_out (1 , 11 , 0)
9 e l s e i f p>=320 &p<=900 // t h r e s h o l d 2

10 cmd_digital_out (1 , 10 , 1)
11 s l e e p (1000)
12 cmd_digital_out (1 , 10 , 0)
13 e l s e i f p>900 & p<=1023 // t h r e s h o l d 3
14 cmd_digital_out (1 , 9 , 1)
15 s l e e p (1000)
16 cmd_digital_out (1 , 9 , 0)
17 end
18 end
19 c l o s e_ s e r i a l (1)

94 8. Interfacing a Potentiometer

Chapter 9

Interfacing a Thermistor

A thermistor, usually made of semiconductors or metallic oxides, is a temperature
dependent/sensitive resistor. Depending on the temperature in the vicinity of the
thermistor, its resistance changes. Thermistors are available in two types, NTC
and PTC. NTC stands for Negative Temperature Coefficient and PTC for Positive
Temperature Coefficient. In NTC thermistors, the resistance decreases with the
increase in temperature and vice versa. Whereas, for PTC types, the resistance
increases with an increase in temperature and vice versa. The temperature ranges,
typically, from −55◦ Celsius to +125◦ Celsius.

Thermistors are available in a variety of shapes such as beads, rods, flakes, and
discs. Due to their compact size and low cost, they are widely used in the applica-
tions where even imprecise temperature sensing is sufficient. They, however, suffer
from noise and hence need noise compensation. In this chapter we shall interface a
thermistor with the Arduino Uno board.

9.1 Preliminaries

A typical thermistor and its symbolic representation are shown in 9.1a and 9.1b
respectively. The thermistor is available on the shield provided with the kit. It is
a bead type thermistor having a resistance of 10k at room temperature. A voltage
divider network is formed using thermistor and another fixed 10k resistor. A voltage
of 5 volts is applied across the series combination of the thermistor and the fixed 10k
resistor. Voltage across the fixed resistor is sensed and is given to the ADC via pin
4. Hence at room temperature, both the resistors offer 10k resistance resulting in
dividing the 5V equally. A buzzer is also connected on pin 3 which is a digital output
pin. Connections for this experiment are shown in 9.2a and 9.2b. Nevertheless, the
user doesn’t need to connect any wire or component explicitly.

96 9. Interfacing a Thermistor

(a) Pictorial representation of a thermistor [?] (b) Symbolic representation of
a thermistor

Figure 9.1: Pictorial and symbolic representation of a thermistor

(a) Thermistor connection diagram (b) Buzzer connection diagram

Figure 9.2: Thermistor and buzzer connection diagrams

9.2 Reading thermistor from Arduino IDE

In this section we will learn how to read values from the thermistor connected at
pin 4 of the Arduino Uno board. We shall also see how to drive a buzzer depending

9.2. Reading thermistor from Arduino IDE 97

upon the thermistor values.

1. A simple code to read the values from thermistor is given in Arduino Code 9.1.
The arduino IDE based command for the analog read functionality is given by.

9 value=analogRead (A4) ; // r e ad v a l u e f rom t h e r m i s t o r

where A4 represents the analog pin 4 to be read. The read value is stored in
variable value and is displayed using

10 S e r i a l . p r i n t l n (va lue) ; // d i s p l a y

The command on next line
11 delay (500) ;

is used to put a delay of 500 milliseconds. This is to avoid very fast display
of the read values. The entire reading and display operation is carried out 40
times.

The values can be observed over the serial monitor. The numbers displayed
range from 0 to 1023. At room temperature you may get the output of ADC
around 500. If a heating or cooling source is available, one can observe the
increase or decrease in the ADC output. Although the thermistor is of NTC
type, the ADC output increases with increase in temperature. This is because
the voltage across the fixed resistor is sensed.

2. In this experiment, we will turn the buzzer on and off depending on the tem-
perature sensed by the thermistor. The program for this is available at Ar-
duino Code 9.2. We shall use the ADC output to carry this out. The buzzer
is connected on pin 3 which is a digital output pin. The ADC output value
is displayed on the serial monitor. At the same time it is compared with
value 550. Temperature of the thermistor can be raised by just holding it for
a while. Doing so will transfer heat from the person holding the thermistor,
thereby raising the temperature of the thermistor. As soon as the ADC output
exceeds 550, the buzzer is given a digital high signal, turning it On. A delay of
half a second is introduced before the next value is read. This loop is executed
100 times.

Exercise 9.1 Carry out the following exercise:

1. Put the thermistor in the vicinity of an Ice bowl. Take care not to wet the
shield while doing so. Note down the ADC output value for 0◦Celsius.

98 9. Interfacing a Thermistor

9.3 Reading thermistor from Scilab scripts

In this section we will explain a few Scilab scripts to read values from thermistor and
to use them. The cmd_analog_in command will be used to read from thermistor
connected to an analog input pin. The experiments will be carried out using Scilab.

1. In the first experiment, Scilab Code 9.1 is used to read values from thermistor.
First the serial port is opened using the command open_serial and passing
the correct port number to it. The command cmd_analog_in is used to
read from the analog pin. The pin number is passed to this command as
an argument. The read value is stored in some variable. The value is then
displayed on the scilab console. A sleep of 500 millisecond is executed using
the sleep command and then the reading process is repeated 20 times by
putting it in a for loop. After the loop is finished the serial port is closed
using the close_serial command.

2. In the second experiment, we will use the Scilab script to turn a buzzer on
and off using the thermistor values. The changes in the thermistor resistance
is sensed as a voltage change between 0 to 5V. The ADC maps the thermistor
voltage readings in to values ranging from 0 to 1023. This means 0 for 0
volts and 1023 for 5 volts. In this experiment we compare the ADC output
value with 550 and as soon as the value exceeds 550 the buzzer is turned on.
See Scilab Code 9.2 for the complete code. We use if loop to achieve this
functionality. Command cmd_digital_out is used to turn the buzzer on
and off. The correct port number on which the buzzer is connected is passed
to this command as an argument. The entire process is repeated 500 times.

Exercise 9.2 Carry out the exercise below: Convert the ADC output readings
to degree Celsius. There are two ways to do so.

1. In the first method,

1

T
= A+B ∗ ln(R) + C ∗ (ln(R))3 (9.1)

equation 9.1 can be used if the value of A, B, C and R are known. The
temperature T is in kelvin and thermistor resistance R is in ohms. The
values of A, B and C can be found out by measuring thermistor resistance
against three known values of temperatures. The values of temperature
must be within the operating range and should typically include the room
temperature. Once a set of three values of T and R are known it will result
in three equations with three unknowns. The values of A, B, C can be found

9.4. Reading thermistor from Xcos 99

out by solving the three equations simultaneously. Once the values of A, B,
C are known, the same equation can be used to directly convert resistance
to kelvin. It can be then converted to Celsius. This method is preferred
when the temperature coefficient of thermistor is not known or is known
very approximately. This method is bit cumbersome but can give accurate
temperature conversion.

2. In the second method,

1

T
=

1

T0
+

1

β
∗ ln

(
R

R0

)
(9.2)

equation 9.2 can be used if the value of β i.e. the Temperature Coefficient
of Resistance of the thermistor used is known. The value of β can be found
in the data sheet of the thermistor used. R is the resistance of thermistor
at temperature T in kelvin. R0 is the resistance of thermistor at room
temperature T0 in kelvin.

9.4 Reading thermistor from Xcos

In this section we will carry out the same experiments discussed in the previous
sections but through Xcos. One should go through Sec. 3.3 before continuing.

1. The xcos diagram for performing the simple thermistor read operation is as
shown in Fig. 9.3. The location of the xcos file is mentioned in the caption
of the figure. The parameters of the blocks can be changed by right clicking
on the block and choosing Block Parameters. One can also double click
on the block. The values for each block is tabulated in Table 9.1. All other
parameters are to be left unchanged.

The thermistor readings can be varied by bringing a heating or cooling source
in the vicinity of it. The graph as shown in Fig. 9.4 will show the variations
in the ADC output that is displayed.

2. In the second experiment, we will switch On and Off a buzzer depending on
the thermistor readings (ADC output). The xcos diagram for this experiment
is as shown in Fig. 9.5. The parameters of the blocks can be changed by right
clicking on the block and choosing Block Parameters. One can also double

100 9. Interfacing a Thermistor

Figure 9.3: Xcos diagram to read thermistor values. This is what one sees when Ori
gin/user-code/thermistor/scilab/therm-read-xcos.zcos, see Foot-
note 2 on page 2, is invoked.

Table 9.1: Xcos parameters to read thermistor

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 100

Sampling period(s) 0.1
ANALOG_READ_SB Analog Pin 4

Arduino card number 1
CSCOPE Ymin 200

Ymax 600
Refresh period 100

CLOCK_c Period 0.1
Initialisation Time 0

click on the block. The values for each block is tabulated in Table 9.1. All
other parameters are to be left unchanged.

The graph as shown in Fig. 9.6 will show the variations in the ADC output that
is displayed and the corresponding switching of buzzer whenever the limits are
crossed.

9.4. Reading thermistor from Xcos 101

Figure 9.4: Output of Xcos diagram to read thermistor values. This is what one sees
when Origin/user-code/thermistor/scilab/therm-read-xcos.zcos,
see Footnote 2 on page 2, is executed.

Figure 9.5: Xcos diagram to read the value of the thermistor, which is used to turn
the buzzer on or off. This is what one sees when Origin/user-code/thermist
or/scilab/therm-buzzer-xcos.zcos, see Footnote 2 on page 2, is invoked.

102 9. Interfacing a Thermistor

Table 9.2: Xcos parameters to read thermistor and switch the buzzer

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 100

Sampling period(s) 0.1
ANALOG_READ_SB Analog pin 4

Arduino card number 1
CMSCOPE Ymin 0 300

Ymax 1 600
Refresh period 100 100

CLOCK_c Period 0.1
Initialisation time 0

SWITCH2_m Datatype 1
threshold 550
pass first input if field 0
use zero crossing 1

DIGITAL_WRITE_SB Digital pin 3
Arduino card number 1

Figure 9.6: Output of Xcos diagram to switch buzzer through thermistor values.
This is what one sees when Origin/user-code/thermistor/scilab/therm
-buzzer-xcos.zcos, see Footnote 2 on page 2, is executed.

9.5. Arduino Code 103

9.5 Arduino Code

Arduino Code 9.1 Read and display the thermistor values. Available at Origi
n/user-code/thermistor/arduino/therm-read/therm-read.ino, see
Footnote 2 on page 2.

1 int value ;
2 int i ;
3

4 void setup ()
5 {
6 S e r i a l . begin (115200) ;
7 for (i =1; i <=40; i++)
8 {
9 value=analogRead (A4) ; // r e ad v a l u e f rom t h e r m i s t o r

10 S e r i a l . p r i n t l n (va lue) ; // d i s p l a y
11 delay (500) ;
12 }
13

14 }
15

16 void loop ()
17 {
18 }

Arduino Code 9.2 Turning the buzzer on and off using the thermistor values read
by ADC. Available at Origin/user-code/thermistor/arduino/therm-bu
zzer/therm-buzzer.ino, see Footnote 2 on page 2.

1 int value ;
2 int i ;
3

4 void setup ()
5 {
6 pinMode (3 ,OUTPUT) ;
7 S e r i a l . begin (115200) ;
8

9 for (i =1; i <100; i++)
10 {
11 value=analogRead (A4) ; // r e ad v a l u e f rom t h e r m i s t o r
12 S e r i a l . p r i n t l n (va lue) ; // d i s p l a y
13

14 i f (value >550)
15 {
16 d i g i t a lWr i t e (3 ,HIGH) ; // Turn ON buz z e r
17 }
18 else
19 {

104 9. Interfacing a Thermistor

20 d i g i t a lWr i t e (3 ,LOW) ; // Turn OFF bu z z e r
21 }
22 delay (500) ;
23 }
24 }
25

26 void loop ()
27 {
28 }

9.6 Scilab Code

Scilab Code 9.1 Read and display the thermistor values. Available at Origin/u
ser-code/thermistor/scilab/therm-read.sce, see Footnote 2 on page 2.

1

2 ok=open_ser ia l (1 ,2 ,115200) ; // Por t 2 w i th baud r a t e 115200
3 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port . P lease check ’) end
4 for i =1:20 // Run f o r 20 i t e r a t i o n s
5 p=cmd_analog_in (1 , 4) ; // r e ad an a l o g p in 4 (t h e r m i s t o r)
6 di sp (p) ;
7 s l e e p (500) // De lay o f 500 m i l l i s e c o n d s
8 end
9 c = c l o s e_ s e r i a l (1) // c l o s e s e r i a l c o n n e c t i o n

Scilab Code 9.2 Turning the buzzer on and off using the thermistor values read
by ADC. Available at Origin/user-code/thermistor/scilab/therm-buz
zer.sce, see Footnote 2 on page 2.

1 ok=open_ser ia l (1 ,2 ,115200) ; // p o r t 2 , b aud r a t e 115200
2 i f ok~=0 then e r r o r (’ Unable to open s e r i a l port , p l e a s e check ’) ; end
3 for i =1:500 //Run f o r 500 i t e r a t i o n s
4 p=cmd_analog_in (1 , 4) // r e ad an a l o g p in 4 (t h e r m i s t o r)
5 di sp (p) ;
6 i f (p>550) // S e t t i n g Th r e s ho l d v a l u e o f 550
7 cmd_digital_out (1 , 3 , 1) // Turn ON BUZZER
8 else
9 cmd_digital_out (1 , 3 , 0) // Turn OFF BUZZER

10 end
11 s l e e p (500) ;
12 end
13 c l o s e_ s e r i a l (1)

Chapter 10

Interfacing a Servomotor

A servomotor is a very useful industrial control mechanism. Learning to control it
will be extremely useful for practitioners. In this chapter, we will explain how to
control a servomotor using the Arduino Uno board. We will begin with preliminaries
of servomotors and explain how to connect a typical servomotor to the Arduino Uno
board and shield. We will then explain how to control it through Arduino IDE,
Scilab and Xcos. We will give code for all the experiments.

10.1 Preliminaries

A servomotor is a rotary control mechanism. It can be commanded to rotate to a
specified angle. It can rotate in positive or negative direction. Using servomotors,
one can control angular position, velocity and acceleration. Servomotors are useful
in many applications. Some examples are robotics, industrial motors and printers.

Typical servomotors have a maximum range of 180◦, although some have different
ranges6 Servomotors typically have a position sensor, using which, rotate to the
commanded angle. The minimum angle to which a servomotor can be rotated is its
least count, which varies from one model to another. Low cost servomotors have a
large least count, say, of the order of 10◦.

A servomotor typically comes with three terminals for the following three signals:
position signal (PWM), Vcc and ground. We now explain how to connect a typical
servomotor to the Arduino Uno board, through Table 10.1.

6All the angles in a servomotor are absolute angles, with respect to a fixed reference point, which
can be taken as 0◦.

106 10. Interfacing a Servomotor

Table 10.1: Connecting a typical servomotor to Arduino Uno board

Servomotor terminal Arduino board
Position signal 9
Ground (black/brown wire) Ground
Vcc (red or orange middle-wire) 5V
Signal (orange or yellow) Pin 9

10.2 Control through Arduino IDE

In this section, we will describe some experiments that will help rotate the servomotor
based on the command given from Arduino IDE. We will also give the necessary code.
We will present four experiments in this section. The shield has to be attached to the
Arduino Uno board before doing these experiments. The reader should go through
the instructions given in Sec. 3.1 before getting started.

1. In the first experiment, we will move the servomotor by 30◦ using Arduino Code 10.1.
Line 1 of this code includes a header file that initializes some of the parameters.
Line 2 creates a Servo object and calls it myservo. Most Arduino boards al-
low the creation of 12 servo objects. Line 4 commands myservo to be attached
to pin 9. Line 5 asks the servomotor to rotate by 90◦. Other commands are as
in the previous chapters.

Once this code is executed, the servomotor would move by 30◦, as commanded.
What happens if this code is executed once again? The motor will not move at
all. What is the reason? Recall that what we assign to the motor are absolute
positions, with respect to a fixed origin. As a result, there will be no change
at all.

2. In the second experiment, we move the motor by 90◦ in the forward direction
and 45◦ in the reverse direction. This code is given in Arduino Code 10.2. In
Line 6, we provide a delay of one second. What is the reason? If the delay
were not there, the motor will move only by the net angle of 90 − 45 = 45
degrees. The reader should verify this by commenting on the delay command.

3. In the third experiment, we move the motor in increments of 20◦. This is
achieved by the for loop, as in Arduino Code 10.3. Both i, the loop variable
and angle, the variable to store angle, are declared as int in this code. The
code helps the motor move in steps of 20◦ all the way to 180◦. Please see below
a few exercise questions.

4. Finally, in the last experiment, we read the potentiometer value from the shield

10.3. Control through Scilab Scripts 107

and use it to drive the servomotor, see Arduino Code 10.4. The resistance of
the potentiometer is represented in 10 bits. As a result, the resistance value
could be any one of 1,024 values, from 0 to 1,023. This entire range is mapped
to 180◦. By rotating the potentiometer, one can make the motor move by
different amounts.

The potentiometer is connected to pin number 2. Through this pin, the resis-
tance of the potentiometer, in the range of 0 to 1,023, depending on its position,
is read. Thus, by rotating the potentiometer, we make different values appear
on pin 2. This value is used to move the servo. For example, if the resistance
is half of the total, the servomotor will go to 90◦ and so on. The servomotor
stops for half a second after every move. The loop is executed 5,000 times,
with half a second delay for each iteration. During this period, the servomotor
keeps moving as dictated by the resistance of the potentiometer.

Exercise 10.1 Let us carry out this exercise:

1. In Arduino Code 10.3, the loop parameter i starts from 1. From what angle
will the motor start? If one wants the motor to start from 0◦, what should
one do?

2. How does one find the least count of the servomotor? If the variable angle
is chosen to be less than this least count in Arduino Code 10.3, what hap-
pens?

3. What happens if 180 in Line 10 of Arduino Code 10.4 is changed to 90?
What does the change 180 to 90 mean?

10.3 Control through Scilab Scripts

In this section, we will carry out the servomotor control experiments using Scilab.
We will follow the same order as in Sec. 10.2. We assume that the shield is attached
to the Arduino Uno board while doing these experiments. They will work without
the shield also, but in this case, our comments on colour LEDs lighting will not be
applicable. The reader should go through the instructions given in Sec. 3.2 before
getting started.

1. The first experiment makes the servomotor move by 30◦, the code for which
is given in Arduino Code 10.1. It first opens com port 2 in Arduino Uno card

108 10. Interfacing a Servomotor

number 1 with baud rate of 115200. If the port opening is unsuccessful ok will
not be 0 and the program terminates, asking the user to correct the problem.
Else If the port opening is successful, ok will be 0 and the program proceeds.
In Line number 3 of the code, i.e.,

3 cmd_servo_attach (1 , 1) // To a t t a c h th e motor t o p i n 9

we say that the servomotor is attached on board 1 (the first entry) to pin 1
(the second entry). In the Scilab toolbox, pin 1 and pin 9 are connected and
as a result, we connect the wire physically to pin 9. Similarly, pins 2 and 10
are connected through the Scilab toolbox.

2. In Scilab Code 10.2, we make the servomotor rotate to 90◦, wait for a second
and go to 45◦. As mentioned earlier, the angles are absolute with respect to a
fixed reference point and not relative.

3. In the next experiment, we rotate the servomotor in discrete steps of 20◦. This
is achieved by multiplying 20◦ by an integer i, which varies from 0 to 10. Once
the maximum angle reaches 180◦, it stops.

4. Finally, in the last experiment, we position the servomotor through the poten-
tiometer in the code Scilab Code 10.4. As we rotate the potentiometer, the
servomotor’s angle also changes. The potentiometer value is read through pin
2, in line number 5, as below:

5 p=cmd_analog_in (1 , 2) // Read p o t n t i o m e t e r v a l u e

This value is mapped into a value between 0 and 180◦ by multiplying with
180/1023 in line 6:

6 p=f l o o r (p∗(180/1023)) // S c a l e P o t e n t i ome t e r v a l u e t o 0−180

The floor function gets the integer part of the number by truncation. This
is the angle by which the potentiometer is to be moved. Truncation is a not
a crucial calculation, however. In every iteration, the servomotor’s position
is calculated, and placed for half a second. This loop is iterated upon 5,000
times.

10.4 Control through Xcos code

In this section, we will see how to rotate the servomotor from Scilab Xcos. We will
carry out experiments similar to the ones in earlier sections. For each, we will give
the location of the zcos file and the parameters to set. The reader should go through
the instructions given in Sec. 3.3 before getting started.

10.4. Control through Xcos code 109

Figure 10.1: Rotating the servomotor by a fixed angle. This is what one sees when Or
igin/user-code/led/scilab/servo-init.zcos, see Footnote 2 on page 2,
is invoked.

Table 10.2: Parameters to rotate the servomotor by 30◦

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
SERVO_WRITE_SB Servo number 1

Arduino card number 1
CONST_m Constant value 30

1. First we will rotate the servomotor by 30◦. When the file required for this
experiment is invoked, one gets the GUI as in Fig. 10.1. In the caption of this
figure, one can see where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 10.2. All other
parameters are to be left unchanged.

110 10. Interfacing a Servomotor

Figure 10.2: Rotating the servomotor forward and then reverse. This is what
one sees when Origin/user-code/led/scilab/servo-reverse.zcos, see
Footnote 2 on page 2, is invoked.

2. Next, we will rotate the servomotor by 90◦ and bring it to 45◦, all absolute
values. When the file required for this experiment is invoked, one gets the GUI
as in Fig. 10.2. In the caption of this figure, one can see where to locate the
file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 10.3. All other
parameters are to be left unchanged.

3. Next, we will rotate the servomotor in increments of 20◦. When the file required
for this experiment is invoked, one gets the GUI as in Fig. 10.3. In the caption
of this figure, one can see where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 10.4. Do on
Overflow 0 means that we need to do nothing when there is an overflow.
All other parameters are to be left unchanged.

4. Finally, we will use Xcos to rotate the servomotor as per the input received
from the potentiometer. When the file required for this experiment is invoked,

10.4. Control through Xcos code 111

Table 10.3: Parameters to rotate the servomotor forward and reverse

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
SERVO_WRITE_SB Servo number 1

Arduino card number 1
STEP_FUNCTION Step time 1

Initial value 90
Final value 45

Figure 10.3: Rotating the servomotor in increments of 20◦. This is what one sees
when Origin/user-code/led/scilab/servo-loop.zcos, see Footnote 2
on page 2, is invoked.

one gets the GUI as in Fig. 10.4. In the caption of this figure, one can see
where to locate the file.

We will next explain how to set the parameters for this simulation. To set value
on any block, one needs to right click and open the Block Parameters or
double click. The values for each block is tabulated in Table 10.5. All other

112 10. Interfacing a Servomotor

Table 10.4: Parameters to make the servomotor to sweep the entire range in incre-
ments

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE Duration of acquisition(s) 10

Sampling period(s) 0.1
SERVO_WRITE_SB Servo number 1
CLOCK_c Period 1

Initialization time 0.1
Counter Minimum value 0

Maximum value 10
Rule 1

GAINBLK Gain 20
Do on overflow 0

Figure 10.4: Rotating the servomotor as suggested by the potentiometer. This is
what one sees when Origin/user-code/led/scilab/servo-pot.zcos, see
Footnote 2 on page 2, is invoked.

parameters are to be left unchanged. The ANALOG_READ_SB block reads
the value of potentiometer and is converted into rotation angle (180/1023),
computed by GAIN_f.

10.5. Arduino Code 113

Table 10.5: Parameters to rotate the servomotor based on the input from the poten-
tiometer

Name of the block Parameter name Value
ARDUINO_SETUP Identifier of Arduino Card 1

Serial com port number 2, see Footnote 4 on page 28
TIME_SAMPLE The duration of acquisition(s) 100

Sampling period(s) 0.1
SERVO_WRITE_SB Servo number 1
ANALOG_READ_SB Analog Pin 2

Arduino card number 1
GAIN_f Gain 180/1023

10.5 Arduino Code

Arduino Code 10.1 Rotating the servomotor to a specified degree. Available at
Origin/user-code/servo/arduino/servo-init/servo-init.ino, see
Footnote 2 on page 2.

1 #include <Servo . h>
2 Servo myservo ; // c r e a t e s e r v o o b j e c t t o c o n t r o l a s e r v o
3 void setup () {
4 S e r i a l . begin (115200) ;
5 myservo . attach (9) ; // a t t a c h th e s e r v o o b j e c t on to p i n 9
6 myservo . wr i t e (30) ; // t e l l s e r v o to r o t a t e by 30 d e g r e e s
7 delay (1000) ;
8 myservo . detach () ;
9 }

10 void loop () {
11 }

Arduino Code 10.2 Rotating the servomotor to a specified degree and reversing.
Available at Origin/user-code/servo/arduino/servo-reverse/servo-
reverse.ino, see Footnote 2 on page 2.

1 #include <Servo . h>
2 Servo myservo ; // c r e a t e s e r v o o b j e c t t o c o n t r o l a s e r v o
3 void setup () {
4 S e r i a l . begin (115200) ;
5 myservo . attach (9) ; // a t t a c h th e s e r v o o b j e c t on to p i n 9
6 myservo . wr i t e (90) ; // t e l l s e r v o to r o t a t e by 90 d e g r e e s
7 delay (1000) ;
8 myservo . wr i t e (45) ;
9 delay (1000) ;

10 myservo . detach () ;

114 10. Interfacing a Servomotor

11 }
12 void loop () {
13 }

Arduino Code 10.3 Rotating the servomotor in increments. Available at Orig
in/user-code/servo/arduino/servo-loop/servo-loop.ino, see Foot-
note 2 on page 2.

1 #include <Servo . h>
2 Servo myservo ; // c r e a t e s e r v o o b j e c t t o c o n t r o l a s e r v o
3 int ang le =20;
4 int i =0;
5 void setup () {
6 for (i =1; i <10; i++) {
7 S e r i a l . begin (115200) ;
8 myservo . attach (9) ; // a t t a c h th e s e r v o o b j e c t on to p i n 9
9 myservo . wr i t e (ang le ∗ i) ; // t e l l s e r v o to r o t a t e by 20 d e g r e e s

10 delay (1000) ; // wa i t s f o r a s e c
11 }
12 myservo . detach () ;
13 }
14 void loop () {
15 }

Arduino Code 10.4 Rotating the servomotor through the potentiometer. Avail-
able at Origin/user-code/servo/arduino/servo-pot/servo-pot.ino,
see Footnote 2 on page 2.

1 #include <Servo . h>
2 Servo myservo ; // c r e a t e s e r v o o b j e c t t o c o n t r o l a s e r v o
3 int potpin = 2 ; // an a l o g p i n used to c onn e c t th e p o t e n t i o m e t e r
4 int va l ; // v a r i a b l e t o r e ad th e v a l u e f rom the an a l o g p i n
5 int i ;
6 void setup () {
7 S e r i a l . begin (115200) ;
8 myservo . attach (9) ; // a t t a c h th e s e r v o o b j e c t on to p i n 9
9 for (i =0; i <5000;++ i) {

10 va l = analogRead (potpin) ; // r e a d s a v a l u e i n (0 , 1 0 2 3) th r ough pot
11 va l = map(val , 0 , 1023 , 0 , 180) ; // maps i t i n th e r ang e (0 , 1 8 0)

d e g r e e s
12 myservo . wr i t e (va l) ; // moves th e motor t o th e mapped d e g r e e
13 delay (500) ; // wa i t s f o r a s e c ond f o r s e r v o to r e a c h
14 }
15 myservo . detach () ;
16 }
17 void loop () {
18 }

10.6. Scilab Code 115

10.6 Scilab Code

Scilab Code 10.1 Rotating the servomotor to a specified degree. Available at Ori
gin/user-code/servo/scilab/servo-init.sce, see Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,2 ,115200) // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end
3 cmd_servo_attach (1 , 1) // To a t t a c h th e motor t o p i n 9
4 cmd_servo_move (1 , 1 , 30) // t e l l s e r v o to r o t a t e by 30 d e g r e e s
5 s l e e p (1000)
6 c l o s e_ s e r i a l (1)

Scilab Code 10.2 Rotating the servomotor to a specified degree and reversing.
Available at Origin/user-code/servo/scilab/servo-reverse.sce, see
Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,2 ,115200) // Connect t o Ardu ino a t p o r t 2
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end
3 cmd_servo_attach (1 , 1) // Attach th e motor t o p i n 9 . 1 means 9
4 cmd_servo_move (1 , 1 , 90) // Move th e s e r v o to 90 d e g r e e
5 s l e e p (1000) // be t h e r e f o r one s e c ond
6 cmd_servo_move (1 , 1 , 45) // Move th e s e r v o to 45 d e g r e e
7 s l e e p (1000) // be t h e r e f o r one s e c ond
8 c l o s e_ s e r i a l (1) // To c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 10.3 Rotating the servomotor in steps of 20◦. Available at Origin/
user-code/servo/scilab/servo-loop.sce, see Footnote 2 on page 2.

1 ok= open_ser ia l (1 ,2 ,115200) ; // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end
3 cmd_servo_attach (1 , 1) // Attach motor t o p in 9 . 1 means p i n 9 .
4 s l e e p (1000)
5 ang le =20; // Angle by which i t has t o move
6 for i =0:10
7 cmd_servo_move (1 ,1 , ang le ∗ i) // t e l l s e r v o to r o t a t e by 20 d e g r e e s
8 s l e e p (1000) // wa i t s f o r a s e c
9 end

10 cmd_servo_detach (1 , 1) // Detach th e motor
11 c l o s e_ s e r i a l (1) ; //To c l o s e th e c o n n e c t i o n s a f e l y

Scilab Code 10.4 Rotating the servomotor to a degree specified by the poten-
tiometer. Available at Origin/user-code/servo/scilab/servo-pot.sce,
see Footnote 2 on page 2.

1 ok = open_ser ia l (1 ,2 ,115200) // At p o r t 2 w i th baud r a t e o f 115200
2 i f ok ~= 0 e r r o r (’Check the s e r i a l port and try again ’) ; end

116 10. Interfacing a Servomotor

3 cmd_servo_attach (1 , 1) // Attach th e motor t o p i n 9
4 for i =1:5000 // 5 , 000 i t t e r a t i o n s
5 p=cmd_analog_in (1 , 2) // Read p o t n t i om e t e r v a l u e
6 p=f l o o r (p∗(180/1023)) // S c a l e P o t e n t i ome t e r v a l u e t o 0−180
7 cmd_servo_move (1 ,1 , p) // Command the s e r v o motor
8 s l e e p (500) // s l e e p f o r 500 m i l l i s e c o n d s
9 end

10 cmd_servo_detach (1 , 1) // Detach th e motor
11 c l o s e_ s e r i a l (1)

Chapter 11

Implementation of Modbus
Protocol

In this chapter we will learn one of the advanced applications that can be built using
Scilab-Arduino toolbox. Beginners might want to skip this chapter in the first read-
ing. This experiment enables interfacing Modbus based devices with Scilab-Arduino
toolbox. This functionality has a wide number of applications in the industrial sec-
tor.

11.1 Preliminaries

Modbus is an open serial communication protocol developed and published by Mod-
icon in 1979. Because of ease of deployment and maintenance, it finds wide applica-
tions in industries. The Modbus protocol provides a means to transmit information
over serial lines between several electronic devices in order to control and monitor
them. The controlling device requests for reading or writing information and is
known as the Modbus Master/Client. On the other hand, the device or devices sup-
plying the information are called Modbus Slaves/Server. All the slaves/servers have
a unique id and address. Typically, there is one Master and maximum 247 Slaves.

During the communications on a Modbus network, the protocol determines how
the controller gets to know its device address, recognizes the message provided and
decides the action to be taken and accordingly extracts data and information con-
tained in the message. The data is sent as a series of zeros and ones, i.e. bits wherein
zeros are sent as positive voltages and ones as negative.

Different versions of Modbus protocol exist on serial lines, namely Modbus RTU,
ASCII and TCP. The Energy Meter used in this experiment supports Modbus RTU
protocol. In Modbus RTU, the data is coded in binary and requires only one com-

118 11. Implementation of Modbus Protocol

Figure 11.1: Block diagram representation of the Protocol

Figure 11.2: Master-Slave Query-Response Cycle

munication byte. This is ideal for use over RS232 or RS485 networks at baud rates
between 1200 and 115K.

The RS485 is one of the most widely used bus standards for industrial applica-
tions. It uses differential communication lines to communicate over long distances
and requires a dedicated pair of signal lines, say A and B, to exchange information.
Here, the voltage on one line equals to the inverse of the voltage on the other line.
In other words, the output is, 1, if A-B>200mV, and 0, if B-A>200mV.

Energy Meter is a device that measures amount of electricity consumed by the
load. We are using Energy Meter EM6400, which is a multifunction digital power
meter by Schneider Electric India. It reads various parameters such as phase voltage,
current, active power, reactive power, power factor etc. Before using the meter, one

11.1. Preliminaries 119

Figure 11.3: Pins in RS485 module

has to program system configuration, PT, CT ratios, communication parameters
through front panel keys. EM6400 supports Modbus for communication.

Multiple operations can be performed with devices supporting Modbus. Every
operation has its own fixed function code (coil status-01, input status-02, holding
registers-03, input registers-04, etc.), which is independent of devices. All the pa-
rameter values are stored in the holding registers. Different holding registers hold
values of different parameters. Individual parameter addresses can be found in user
manual for EM6400. For example,

Current (phase 1): 3929
Voltage (phase 1): 3927
Active power (phase 1): 3919

The size of each Modbus register is 16 bits and all EM6400 readings are 32 bits.
So, each reading occupies two consecutive Modbus registers. Values in every register
are in little endian format (1st register contains LSB and next register contains
MSB). In our case, Energy Meter is a slave and slave addresses can be set between
1 and 247.

A request to read holding registers has to be sent in a specified format. An
example of a request packet is as follows. Suppose that the request is 01 03 0F56 0002
270F. Its meaning is explained in Table 11.1. The response packet corresponding the
above request packet is given as 01 03 04 2921 4373 D2B0. Its meaning is explained
in Table 11.2.

Values in required registers are 43732921 in hex (since obtained values are being
read in little endian format) which is 243.16 when converted to floating point using

120 11. Implementation of Modbus Protocol

Table 11.1: Interpretation of a request packet

01 Slave address
03 Function code to read holding registers
0F56 Data Address of the first requested register (address for volt-

age phase1 to neutral) and (0F56 hex = 3927, +40001 offset
= 43928)

0002 Total number of registers requested for read
270F CRC (Cyclic Redundancy Check) for error checking (LSB

first)

Table 11.2: Interpretation of a response packet

.

01 Slave address
03 Function code to read holding registers
04 Total number of bytes read
2921 Data in 1st requested register
4373 Data in 2st requested register
D2B0 CRC for error checking (LSB first)

IEEE 754 norms. Obtained value is a voltage (phase1 to neutral) which is 243.16
Volts.

Most of the numeric values to be stored in the computer are more than one
byte long. Thus, there arises a question of how to store the multibyte values on the
computer machines where each byte has its own address i.e. which byte gets stored
at the ”first” (lower) memory location and which bytes follow in higher memory
locations. For example, if a two byte integer 0x5E5F is stored on disk by one machine
with the 0x5E (high byte or MSB) stored at the lower memory address and the 0x5F
(low byte or LSB) stored at a higher memory address, but a different machine reads
that integer by picking 0x5F for the high byte and the 0x5E for the low byte, giving
0x5F5E, thus resulting into an disagreement on the value of the integer between the
two machines. However, there is no so called ”right” ordering to store the bytes in
the case of multibyte quantities. Hardware is built to store the bytes in a particular
fashion and as long as compatible hardware reads the bytes in the same fashion,
things are fine. Following are the two major types of byte ordering:

Little Endian: If the hardware is designed so that the lowest or the least significant
byte (LSB) of a multibyte integer is stored ”first”, at the lowest memory address,
then the hardware is said to be Little Endian. In this format, the ”little” end of
the integer gets stored first and the next bytes get stored in higher (increasing)

11.1. Preliminaries 121

Table 11.3: Hexadecimal to Decimal

Four Bytes Integer Reading from Meter
Memory Address Memory Address Little Endian Big Endian
3900 8A43 MSB LSB
3901 436B LSB MSB

Table 11.4: Single and Double Precision Representation

Single Sign (1 bit) Exponent (8 bit) Mantissa (23 bit)
Double Sign (1 bit) Exponent (11 bit) Mantissa (52 bit)

memory locations.

Big Endian: Here, the hardware is designed so that the highest or the most signif-
icant byte (MSB) of a multibyte integer is stored ”first”, at the lowest memory
address. Thus, the ”big” end of the integer gets stored first and accordingly
the next bytes get stored in higher (increasing) memory locations.

For example, let us take a four byte integer 0x436B84A3. Quite obvious, the ”little”
end byte, LSB is 0x84A3, and the ”big” end byte, MSB is 0x436B; taking into
consideration that the Read Holding Registers are 16 bits each. Thus the aforesaid
memory storage patterns for the integer would be Table 11.3.

In order to represent the Hexadecimal values of the Read Holding Registers into
user friendly decimal (floating point) values, we follow IEEE 754 Standard. Most
common standards for representing floating point numbers are:

1. Single Precision: Used for 32 bits. Out of those 32 bits, one bit represents
the sign bit, 8 bits for exponent and the remaining 23 bits for mantissa, as
depicted in Table 11.4.

2. Double Precision: Used for 64 bits. Out of those 32 bits, one bit represents
the sign bit, 8 bits for exponent and the remaining 23 bits for mantissa, as
depicted in Table 11.4.

Finally, the decimal value is given by, Decimal Value = (−1) ∗ sign ∗ 2exponent ∗
Mantissa. Hence, for 32 bit values, the sign is stored in bit 32. The exponent can be
calculated from bits 24-31 by subtracting 127. The mantissa is stored in bits 1-23.
An invisible leading bit (i.e. it is not actually stored) with value 1.0 is placed in front,
then bit 23 has a value of 1/2, bit 22 has value 1/4 etc. As a result, the mantissa has
a value between 1.0 and 2. At last, the decimal value is calculated using the above

122 11. Implementation of Modbus Protocol

mentioned equation. Though there are several online converters available as IEEE
754 Converter, a function has been formulated in Scilab for this conversion here.

11.2 Objective

The objective of this experiment is to make the user acquainted with the use of
Modbus protocol through Arduino Uno. It gives an insight on how to acquire read-
ings from the Energy Meter and interpret them accordingly. As mentioned earlier,
an Energy Meter is a device that gives us different electrical parameters including
voltage, current, and power, consumed by a device. Here, we aim to obtain these
values using Scilab and Arduino Uno. For data transmission, we have used RS485
Module.

Scilab is used for giving the required parameters to Arduino Uno. For example,
the user will tell the required Slave Address to be accessed and the number of registers
to be read from or written to. Here, Arduino Uno acts as a master and Energy Meter
as a slave. Therefore, referring to a particular slave address will refer to the registers
that hold the desired electrical parameters (Current, Voltage, Power etc.), which we
want from the Energy Meter (Slave).

This Arduino Uno is then connected to the Energy Meter via a MAX485 chip
which facilitates long distance communication. The information packet is sent to the
Arduino Uno, which in turn sends it to the Energy Meter. The Energy Meter then
accesses the values in the required addresses in its memory and transfers them back.
This again, is in the form of another packet. Data which is in Little Endian hex
format is obtained from this and is converted to floating point number using IEEE
754.

11.3 Energy Meter set up for Modbus protocol with Ar-
duino Uno

1. As we know, Arduino Uno has one serial port. It communicates on the digital
pins 0 and 1 as well as on the computer via USB. Since we want serial commu-
nication which shouldn’t be disturbed by the USB port and the Serial Monitor,
we use the Software Serial library. Using this library we can assign any digital
pins as RX and TX and use for serial communication. Pin 10 (used as RX)
and Pin 11(used as TX) is connected to RO (Receive Out) and DI (Data In)
pins of MAX485 module respectively.

2. DE (Data Enable) and RE (Receive Enable) pins of RS 485 are shorted and
connected to digital pin 3 of Arduino Uno. This serves as Control Pin which

11.4. Software 123

Figure 11.4: MODBUS Set Up for Energy Meter

will control when to receive and transmit serially.

3. Vcc and GND of the MAX485 module are connected to Vcc and GND of
Arduino.

4. A and B pins of MAX485 are connected to A (Pin 7) and B (Pin 14) pins of
the Energy Meter (meant for RS485 communication).

5. A 120kΩ termination resistance is connected in between pins A and B to avoid
reflection losses in transmission line.

11.4 Software

Software for the demonstration comprises two parts:

1. Arduino Uno firmware code: This code is written to communicate with Scilab
(using serial interface), and with MAX485 chip (using Software Serial inter-
face). Control logic to enable receive and transmit modes of MAX485 chip
is also present in Arduino Uno firmware code.The overall implementation is
being described in Fig. 11.6.

2. Scilab code: This code requests Energy Meter readings by sending request
packet to Arduino Uno from Scilab. Then it waits till requested packet is
available from Arduino Uno. After receiving the packet, it extracts data from

124 11. Implementation of Modbus Protocol

Figure 11.5: Block Diagram for Energy Meter Setup

the packet and converts it into IEEE 754 floating point format. The overall
implementation is being described below:

(a) Frame request packet to be sent to slave in ASCII coded decimal format
(b) Send the packet serially to Arduino Uno board (Arduino Uno sends this

packet to Energy Meter via RS 485 module)
(c) Read the response packet available on Arduino Uno board (sent by Energy

meter to Arduino via RS 485)
(d) Extract holding register contents from received packet
(e) Convert 32 bit register contents which are in little endian format to float-

ing point number using ieeesingle2num function
(f) Display the value of electrical parameter read(i.e. voltage, current or

power)

11.5 Output

1. Single phase current output: Fig. 11.8 and Fig. 11.9 show Scilab code output
of current in Amperes and corresponding snapshot of Energy Meter display
with a single load rated 60W-230V.

2. Single phase voltage output: Fig. 11.10 and Fig. 11.11 show Scilab code output
of voltage in Volts and corresponding snapshot of Energy Meter display with
a single load rated 60W-230V.

11.5. Output 125

Figure 11.6: Flowchart of Arduino firmware

3. Single phase active power outputs are shown in Fig. 11.12 and Fig. 11.13.

In output, user could see the requested energy parameter on Scilab console. For
demonstration we have taken single phase current, single phase voltage and single
phase active power reading. We can always verify the Scilab output with the value
being displayed on the Energy Meter display screen.

126 11. Implementation of Modbus Protocol

Figure 11.7: Flow Chart of the Modbus Energy Meter Implementation

11.6 Reading Parameters from Xcos

In this section we will carry out the same experiments discussed in the previous
sections but through Xcos. One should go through Sec. 3.3 before continuing.

1. The Xcos diagram for performing the read values for single phase current, single
phase voltage and single phase power operation is as shown in Fig. 11.14. The
location of the xcos file is mentioned in the caption of the figure.

The parameters of the blocks can be changed by right clicking on the block
and choosing Block Parameters. One can also double click on the block.
The values for each block is tabulated in Table 11.5. All other parameters are
to be left unchanged.

11.6.1 Troubleshooting

After we send the query using Modbus protocol from Scilab (using write_serial
command) to the Energy Meter, we will receive a packet from the Energy Meter

11.6. Reading Parameters from Xcos 127

Figure 11.8: Single Phase Current Output on Scilab Console

Figure 11.9: Single Phase Current Output on Energy Meter

which will contain the data requested. This data is read serially using (read_serial
command) in Scilab and the bytes so received are stored in the ’buf’ variable. On
analyzing the bytes received (by observing the value of ASCII(buf) or myresult) we
see that there might be some spaces(value 32 in myresult) received. So the required
data starts from the fourth byte available excluding spaces.For example, If there are
n spaces received before the packet, so the required data would be starting at n+4
position(i.e., we have to analyse the four bytes starting at (n+4)th position). Note

128 11. Implementation of Modbus Protocol

Figure 11.10: Single Phase Voltage Output on Scilab Console

Figure 11.11: Single Phase Voltage Output on Energy Meter

that the packet received may have one or more spaces at the starting or the ending
and that is the reason why we may have to shift our indexing for analyzing data.

11.6. Reading Parameters from Xcos 129

Figure 11.12: Single Phase Voltage Output on Scilab Console

Figure 11.13: Single Phase Voltage Output on Energy Meter

130 11. Implementation of Modbus Protocol

Figure 11.14: Xcos diagram to read Energy Meter values. This is what
one sees when Origin/user-code/modbus/scilab, see Footnote 2 on
page 2read_value_xcos.zcos is invoked.

Table 11.5: Xcos parameters to read Energy Meter

Name of the block Parameter name Value
CONST_m Address byte for voltage 86

Address byte for current 88
Address byte for power 78

SELF_SWITCH Signal Routing on/off
BIGSOM_f Scalar vector addition/subtraction Summation [1;1;1]
scifunc_block_m Block for userdefined function read_value.sci
AFFICH_m Block inherits(1) or not (0) 0
CLOCK_c Period 0.1

Initialisation Time 0

11.7. Arduino Code 131

11.7 Arduino Code

Arduino Code 11.1 First 10 lines of the firmware for Modbus. Available at Orig
in/user-code/modbus/arduino, see Footnote 2 on page 2.

1 /∗ . c r c f u n c t i o n . ∗/
2

3 stat ic unsigned char auchCRCHi [] = {0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 ,
0x80 , 0x41 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 ,

4 0x40 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x00 , 0xC1 , 0x81 ,
0x40 , 0x01 , 0xC0 ,

5 0x80 , 0x41 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x00 , 0xC1 ,
0x81 , 0x40 , 0x01 ,

6 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x01 ,
0xC0 , 0x80 , 0x41 ,

7 0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 ,
0x00 , 0xC1 , 0x81 ,

8 0x40 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 , 0x80 ,
0x41 , 0x01 , 0xC0 ,

9 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 ,
0x80 , 0x41 , 0x01 ,

10 0xC0 , 0x80 , 0x41 , 0x00 , 0xC1 , 0x81 , 0x40 , 0x01 , 0xC0 , 0x80 , 0x41 , 0x00 ,
0xC1 , 0x81 , 0x40 ,

11.8 Scilab Code

Scilab Code 11.1 First 10 lines of the Scifunc block function. Available at Origi
n/user-code/modbus/scilab, see Footnote 2 on page 2.

1

2 // v o l t a g e
3 f unc t i on p=read_val (addr_byte)
4 h=open_ser ia l (1 ,2 , 9600)
5

6 // f o r x =1:5
7 // a r r =[a s c i i (0 1) a s c i i (0 3) a s c i i (1 5) a s c i i (8 6) a s c i i (0 0) a s c i i (0 2)

a s c i i (3 9) a s c i i (1 5)] ;
8 // a r r 1=s t r i n g (a r r)
9 i f (addr_byte==86)

10 array1=a s c i i (01)+ a s c i i (03) + a s c i i (15) + a s c i i (86) + a s c i i (00) +
a s c i i (02) + a s c i i (39) + a s c i i (15)

Scilab Code 11.2 First 10 lines of the code for Single Phase Current Output.
Available at Origin/user-code/modbus/scilab, see Footnote 2 on page 2.

1 // c u r r e n t

132 11. Implementation of Modbus Protocol

2 // f u n c t i o n r e ad_cu r r e n t ()
3 f unc t i on read_current ()
4

5 h=open_ser ia l (1 , 2 , 9600)
6 // f o r x =1:5
7 ar r=[a s c i i (01) a s c i i (03) a s c i i (15) a s c i i (88) a s c i i (00) a s c i i (02)

a s c i i (70) a s c i i (204)] ;
8

9 arr1=a s c i i (01) + a s c i i (03) + a s c i i (15) + a s c i i (88) + a s c i i (00) +
a s c i i (02) + a s c i i (70) + a s c i i (204) ;

10 wr i t e_s e r i a l (1 , arr1 , 8) ;

Scilab Code 11.3 First 10 lines of the code for Single Phase Voltage Output. Avail-
able at Origin/user-code/modbus/scilab, see Footnote 2 on page 2.

1 // v o l t a g e
2 f unc t i on read_voltage ()
3 // e n d f u n c t i o n
4 h=open_ser ia l (1 ,2 , 9600)
5

6 // f o r x =1:5
7 ar r=[a s c i i (01) a s c i i (03) a s c i i (15) a s c i i (86) a s c i i (00) a s c i i (02)

a s c i i (39) a s c i i (15)] ;
8 // a r r 1=s t r i n g (a r r)
9 aac=a s c i i (01)+ a s c i i (03) + a s c i i (15) + a s c i i (86) + a s c i i (00) +

a s c i i (02) + a s c i i (39) + a s c i i (15)
10 wr i t e_s e r i a l (1 , aac , 8) ;

Scilab Code 11.4 First 10 lines of the code for Single Phase Active Power Output.
Available at Origin/user-code/modbus/scilab, see Footnote 2 on page 2.

1 // en e r g y
2 f unc t i on read_active_power ()
3

4 h=open_ser ia l (1 ,2 , 9600)
5 // f o r x =1:5
6 ar r=[a s c i i (01) a s c i i (03) a s c i i (15) a s c i i (78) a s c i i (00) a s c i i (02)

a s c i i (167) a s c i i (08)] ;
7 asc1=a s c i i (01) + a s c i i (03) + a s c i i (15) + a s c i i (78) + a s c i i (00) +

a s c i i (02) + a s c i i (167) + a s c i i (08) ;
8

9 wr i t e_s e r i a l (1 , asc1 , 8) ;

References

[1] T. Martin. Use of scilab for space mission analysis.
https://www.scilab.org/community/scilabtec/2009/Use-of-Scilab-for-space-
mission-analysis. Seen on 28 June 2015.

[2] B. Jofret. Scilab arduino toolbox. http://atoms.scilab.org/. Seen on 28 June
2015.

[3] oshwa.org. http://www.oshwa.org/definition. Seen on 28 June 2015.

[4] Mateo Zlatar. Open source hardware logo. http://www.oshwa.org/open-source-
hardware-logo. Seen on 28 June 2015.

[5] Arduino uno. https://www.arduino.cc/en/uploads/Main/ArduinoUnoFront240.jpg.
Seen on 28 June 2015.

[6] Arduino mega. https://www.arduino.cc/en/uploads/Main/ArduinoMega2560_R3
_Fronte.jpg. Seen on 28 June 2015.

[7] Lilypod arduino. https://www.arduino.cc/en/uploads/Main/LilyPad_5.jpg.
Seen on 28 June 2015.

[8] Arduino phone. http://www.instructables.com/id/ArduinoPhone/. Seen on 28
June 2015.

[9] Candy sorting machine. http://beta.ivc.no/wiki/index.php/Skittles_M%26M%27s
_Sorting_Machine. Seen on 28 June 2015.

[10] 3d printer. http://www.instructables.com/id/Arduino-Controlled-CNC-3D-
Printer/. Seen on 28 June 2015.

[11] Shield. http://codeshield.diyode.com/about/schematics/. Seen on 28 June
2015.

[12] scilab.org. http://www.scilab.org/scilab/about. Seen on 28 June 2015.

133

134 References

[13] scilab.org. http://www.scilab.org/scilab/interoperability. Seen on 28 June 2015.

[14] scilab.org. http://www.scilab.org/scilab/features/xcos. Seen on 28 June 2015.

