Every time [some software engineer] says, "Nobody will go to the trouble of doing that", there's some kid in Finland who will go to the trouble.

-Alex Mayfield

INJECTION ATTACK USING PYBRAIN MACHINE LEARNING LIBRARY

GAJENDRA DESHPANDE

Asst. Professor, Department of Computer Science and Engineering,

KLS Gogte Institute of Technology, Udyambag, Belagavi, Karnataka

Scipy India 2017

Lecture Hall Complex, IIT Bombay – 30th November

Contents

- Introduction
- Problem Definition and Proposed Solution
 Conclusion
- Introduction to Xpath Injection
- CAPEC on XPath Injection
- Related Work
- Research Gap Identified
- System Design
- Algorithm
- System Environment
- PyBrain Machine Learning Library

- Snapshots
- References

Introduction

- Cyber Space is a national asset
- XML is a heart of many mainstream technologies, Web Services, Service Oriented Architecture(SOA), Cloud Computing etc.
- Web Services vulnerabilities can be present in Operating System, Network, Database, Web Server, Application Server, Application code, XML parsers and XML appliances
- New technologies New Challenges → (Old challenges + New Challenges)

Solution

Problem Definition

 To secure web resources from XPath injection attack using modular recurrent neural networks.

Proposed Solution

- The proposed solution uses modular recurrent neural network architecture to identify and classify atypical behavior in user input.
 Once the atypical user input is identified, the attacker is redirected to sham resources to protect the critical data.
 - Count based validation technique

Introduction to XPath Injection

 An attacker can craft special user-controllable input consisting of XPath expressions to inject the XML database and bypass authentication or glean information that he normally would not be able to.

<?xml version="1.0" encoding="ISO-8859-1"?>

<users>

<user>

<username>gandalf</username>
 <password>!c3</password>
 <account>admin</account>
 </user>

</users>

string(//user[username/text()='gandalf' and password/text()='!c3']/account/text())

string(//user[username/text()=" or '1' = '1' and password/text()=" or '1' = '1']/account/text())

CAPEC on XPath Injection

Factor	Description
Attack Prerequisites	XPath Queries and unsanitized user controllable input
Typical Likelihood of Exploit	High
Attacker Skills	Low
Indicators	Too many exceptions generated by the application as a
	result of malformed XPath queries
Resource Required	None
Attack Motivation Consequences	Confidentiality- gain privileges and read application data
Injection Vector	User-controllable input used as part of dynamic XPath
	queries
Payload	XPath expressions intended to defeat checks run by XPath
	queries
Activation Zone	XML Database
CIA Impact	High, High, Medium
Architectural Paradigms	Client-Server, Service Oriented Architecture (SOA)
Frameworks, Platforms,	All

Related Work

Authors	Title, Year, Publication	Methods Used
[1]	Mitigating XML Injection	This paper applies ontology to build a strategy based knowledge (XID)
Thiago	Attack through	to protect web services from XML injection attack and to mitigate
Mattos	Strategy-based	from zero-day attack problem.
Rosa	Detection System, 2011,	In strategy based design new attack input will be automatically
et.al.	IEEE Security and	added to the ontology database. As the number of attacks in the
	Privacy[2011 Impact	ontology database increase, the technique will result in increased
	Factor:0.898]	response time.
[2] Nuno	Effective Detection of	The approach is based on XPath and SQL commands learning and
Antunes	SQL/XPath Injection	posterior detection of vulnerabilities by comparing the structure of
et.al.	Vulnerabilities in Web	the commands issued in the presence of attacks to the ones
	Services, 2009, IEEE	previously learned.
	International	In this approach results were not promising since the workload
	Conference [Research	generation took few seconds of time, but learning phase took a few
	Track Acceptance Rate:	minutes of time per operation. The overall time taken by the detection

Related Work

Authors	Title, Year, Publication	Methods Used
[3] Nuno	A Learning-Based	The approach is to learn valid request patterns (learning
Laranjeiro	Approach to Secure Web	phase) and then detect and abort potentially harmful
et.al.	Services from SQL/	requests (protection phase).
	XPath Injection Attacks,	The authors achieved 76% accuracy in detecting the
	2010, IEEE Pacific Rim	SQL/XPath injection attacks.
	International Symposium	
[4] V.	PXpathV: Preventing	In this paper XPath Expression Scanner is integrated with
Shanmug	XPath Injection	XPath Expression Analyzer to validate XPath Expressions.
haneethi	Vulnerabilities in Web	The response time was not promising compared to earlier
et.al.	Applications, 2011,	approaches.
	IJWSC	

Related Work

Authors	Title, Year, Publication	Methods Used
[6] Mike Shields, Matthew	A theoretical framework for multiple neural network systems, 2008	A theoretical framework for multiple neural network systems where a general instance of multiple networks is strictly examined. The authors claim that using an arbitrary number of redundant
Casey		networks to perform complex tasks often results in improved performance
[7] Hanh H. Nguyen, Christine W. Chan	Multiple neural networks for a long term time series forecast, 2004, Springer, Neural Computing & Applications 13: 90–98	The concept of multiple artificial neural networks was used for long term time series prediction where prediction is done by multiple neural networks at different time lengths. The authors showed that the multiple neural network system performed better compared to single artificial neural network for long term forecast
[8] Anand R. et. al,	Efficient classification for multiclass problems using modular neural networks, 1995, IEEE Transactions on	The modular neural network was used to reduce k - class problems to a set of k two-class problems, where each problem was dealt with separately trained network to achieve better performance compared to non-modular networks.

The study showed different approaches to handle XPath injection attacks. It also showed

Research Gap Identified Neural network approach to identify and classify atypical behavior in input

methods applied and their disadvantages. We can conclude from the study that neural

networks are not applied to detect Xpath injection attacks and existing results are not promising.

The study showed, how modularity in case of neural networks helps to achieve improved

performance. Modular neural networks have not been applied to cyber security particularly

to the detection of SQL/XPath injection attacks.

System Design

Web browser

Username

Password

Submit

Some valid inputs: Email-id Mobile number Alphanumeric Some malicious inputs: '1 or 1=1 user' or 'a'='a

some invalid inputs:

Very large input string String with special characters String formed from different character set

Fig. 1: Three tier architecture of the proposed svstem

Algorithm

Algorithm

- 1. Scan the user input.
- 2. Determine the length of user input.
- Count the frequency of every character in the user input [a-z, A-Z, 0-9, "".
 @ # % + = ? :].
- 4. If the frequency of character is below the threshold value set for that particular character in Table 4 then set the error code to 40.
- Else if the frequency of characters [. @ # % + = " "] is above the threshold value set for that particular character in Table 4 then set the error code to 4000.
- 6. Else set the error code to 400.
- Build a recurrent neural network 1 consisting of 50 neurons with hidden layer as LSTM network and output layer as SoftMax.
- Use Rprop- trainer to train the network using the training dataset created using error codes in Table 2.
- 9. Use the test dataset created in real time to validate against the training dataset.
- 10. Build a recurrent neural network 2 consisting of 50 neurons with hidden layer as LSTM network and output layer as SoftMax.
- 11. Use Rprop- trainer to train the network using the training dataset created using number of login attempts in Table 1.
- 12. Use the test dataset created in real time to validate against the training dataset.
- 13. If train error and test error of both the networks are 0.0% then
 - 1. Finally classify the input vector based on the outputs of both the neural networks in Table 3.
 - 2. If the user input is successfully classified as 'valid' and found in the real XML file then Return the message "login successful".
 - Else if the user input is classified as 'malicious' then Return the contents of the fake XML file.
 - Else if the user input is classified as 'invalid' then Return the 'error' message.
- 14. Else repeat the steps 8 through 13.

Table 1. Training dataset for classification of login attempts (Neural network 1)

Number of login attempts	Class
1	Valid
2	Valid
3	Valid
4 or more	Malicious

Table 2. Training dataset for classification of error codes (Neural network 2)

Error code	Class	
40	Valid	
400	Invalid	
4000	Malicious	

Table 4. Characters with threshold value

Special Character	Threshold	Error Code
Single quotes (*)	1	40
Double quote (")	0	4000
Dot (.)	2	40
Alphabets ([a-zA-Z])	Any	40
Digits ([0-9])	Any	40
At the rate (@)	1	40
Equal to (=)	0	400
Square Brackets ([,])	0	400
Round Brackets ((,))	0	400
Curly Brackets ({,})	0	400
Slashes (/)	0	400
Asterisk (*)	0	400
Pipe ()	0	400
Any other character	0	400

Algorithm

Table 3. Final classification of input vector

Output of Neural Network 1	Output of Neural Network 2	Final Classification
Valid	Valid	Valid
Valid	Malicious	Malicious
Malicious	Valid	Malicious
Invalid	Valid	Invalid
Valid	Invalid	Invalid
Invalid	Malicious	Malicious
Malicious	Invalid	Malicious
Malicious	Malicious	Malicious

System Environment

Table 5: Tools and technologies used for experimentation

Software Environment		
Technology	Server Side	Client Side
Neural Networks	PyBRAIN [14]	-
Web Services	BottlePy Micro Web Framework [15]	-
Web Server	WSGIRefServer of BottlePy and	-
	Apache	
Web Browser	Firefox, Konquerer	Firefox, Konquerer
Scripting Language,	Python, numpy, matplotlib [16]	-
Graphs		
Operating Systems	Fedora Linux 14	Fedora Linux 14
Hardware Environment		
System Game environment is used for Development and Testing of the System Tessystem may als		
be deployed on machines with lower configurations and on different platforms.		

Library

- PyBrain is a modular Machine Learning Library for Python.
- PyBrain is short for Python-Based Reinforcement
 Learning, Artificial Intelligence and Neural Network Library
- To download and Install PyBrain
- \$ git clone git://github.com/pybrain/pybrain.git
- \$ python setup.py install
- For more detailed installation instructions visit

http://wiki.github.com/pybrain/pybrain/installation

For Information on PyBrain visit <u>http://www.pybrain.org</u>

Bottle-Python Web Framework

- Bottle is a fast, simple and lightweight WSGI micro web-framework for Python.
- It is distributed as a single file module and has no dependencies other tha the Python Standard Library.
- It includes built in Routing, Templates, Utilities and Server
- Bottle does not depend on any external libraries. You can just download bottle.py into your project directory and start coding:
- \$ wget https://bottlepy.org/bottle.py
- For more information on Bottle Framework visit <u>http://www.bottle.org</u>

Results (True Positives)

Fig. 2: Comparison of true positives

Table 6: Comparison of true positives

Number of	Modular Neural	Single Neural
epochs	Network	Network
50	0	19
100	90	82
150	<mark>96</mark>	80
200	99	55
250	<mark>94</mark>	39
300	<mark>96</mark>	27
350	<mark>93</mark>	30
400	<mark>90</mark>	40
450	90	43
500	<mark>94</mark>	50

Results (False Positives)

Results (True Negatives)

Fig. 4: Comparison of true negatives

Table 8: Comparison of true negatives

Number of epochs	Modular Neural Network	Single Neural Network
50	1	28
100	<mark>93</mark>	80
150	<mark>95</mark>	66
200	<mark>94</mark>	62
250	95	43
300	<mark>96</mark>	37
350	<mark>92</mark>	24
400	<mark>92</mark>	42
450	90	42
500	90	55

Results (False Negatives)

Fig. 5: Comparison of false negatives

Table 9: Comparison of false

negatives		100
Number of	Modular Neural	Single Neural
epochs	Network	Network
50	100	81
100	10	18
150	04	20
200	01	45
250	06	61
300	04	73
350	07	70
400	10	60
450	10	57
500	06	50

Results (Response Time)

Summary of Results

Table 11: Average detection rate including and excluding an outlier

	Average	Average detection Average detection				
	rate incl	uding an	rate excluding an			
	out	lier	out	lier		
	MNN %	SNN %	MNN %	SNN %		
True Positives	84.2	46.5	93.55	51.66		
False	15.8 53.5		6.45	48.33		
Negatives						
True	83.8	47.9	93.11	53.22		
Negatives						
	100	EO 3	0.00	40 77		

Snapshots

-				
9	New	Den Open	🔚 Save 🚀 Save As 🛛 🔞 Close	»
<	<xmlfi< td=""><td>le></td><td></td><td>^</td></xmlfi<>	le>		^
<	<users< td=""><td>></td><td></td><td></td></users<>	>		
13		<user></user>		
13		>	<name first="Jeff" last="Smiley"></name>	
13		>		
			<pre><username>jsmiley</username> <pre>cpaceword>ismiley</pre>/username></pre>	
			<pre><pre>cphone>123.456.7890</pre></pre>	
		e/user	<pre>>></pre>	
		<user></user>		
		Suberr	<pre><name first="Chunk" last="MacRunfast"></name></pre>	
		2	<id>>id>2</id>	
13			<pre><username>cmacrunfast</username></pre>	
		*	<password>speedsupto3</password>	
		*	<pre><phone>603-478-4115</phone></pre>	
à		<td>></td> <td></td>	>	
3		<user></user>	and the second	
18		(*). 1	<name first="Mitch" last="Hedberg"></name>	
3			<id>3</id>	
23			<username>mitch</username>	Ξ
13		>	<password>@lltogether</password>	
3		*	<pre><phone>222-222-222</phone></pre>	
2		<td>></td> <td></td>	>	
1	<td>s></td> <td></td> <td></td>	s>		
1	ssns>			
10		<22115	<pre>cusername>ismilev</pre>	
10			<pre>cnumber>111.22.3333</pre>	
		<ssn></ssn>		
		>	<username>cmacrunfast</username>	
			<number>123-45-6789</number>	
1				
		<ssn></ssn>		

Snapshots (initial output)

Implementation of Prevention of XPath Injection Attack using PyBRAIN Machine Learning Library

Login Form	Neural Network Output	Click to view the output	Analysis of Results	Analysis of Results
UserName				
Password				
Submit Reset				

Snapshots (valid input scenario)

Implementation of Prevention of XPath Injection Attack using PyBRAIN	
Machine Learning Library	

Login Form		Neural Network	Output	Click	to view the outpu	ut	Analysis of Results Analysis of Res	ults
UserName mitch	epoch	0 total error 1 total error	0.21833	avg weight	0.99168	~	Login Attempt: 4	~
Password ••••••••	epoch epoch epoch	2 total error 3 total error 4 total error 5 total error	0.13013 0.15396 0.20026 0.21473	avg weight avg weight avg weight avg weight	0.99189 0.99243 0.99314 0.99309		Result of Neural Network 1 (I/P: Error Code; O/P: Class) ('Number of training patterns: ', 3) ('Input and output dimensions: ', 2, 3) ('train error: 0.00%' ' test error: 0.00%')	=
login successful	epoch epoch epoch epoch epoch	6 total error 7 total error 8 total error 9 total error 10 total error	0.2222 0.22216 0.22222 0.22222 0.22222 0.22222	avg weight avg weight avg weight avg weight avg weight avg weight	0.99529 0.99623 0.998 1.0001 1.0029	*	Result of Neural Network 2 (I/P: Login attempt; O/P: Class) ('Number of training patterns: ', 4) ('Input and output dimensions: ', 2, 2) ('train error: 0.00%', ', test error: 0.00%')	~

General	Architecture of the System		Attack Information	View Log
Presentation fier Web browser Login form Username Password Submit	Business tier Web Server Web Service AuthenticationWS Recurrent Neural Network LSTM Network	Data tier Real XML Document	Remote Port: 59968 Remote Address: 127.0.0.1 Request Method GET Web Browser: Mozilla/5.0 (X11; U; Linux i686; en-US; ry:1.9.2 Gecko/20101005 Fedora/3.6.10-1.fc14 Firefox/3.6.10 Ouery String: Vz7x200r%20%27a%27a Server Time: Tue May 28 16:42:11 2013 Remote Port: S8141 Request Method GET Web Browser: Web Dorder GET Mozilla/5.0 Web Darowser: Mozilla/5.0 Yz1200-2002 Server Time: Tue May 28 16:42:11 2013	2.10)
	Valid Classified? Suspicious Invalid	Custom Error Messages	Query String: txtName=user%27%20or%20%27a%27a6txtPasswd= Server Time: Tue May 28 16:49:50 2013 Remote Address: 127.0.0.1 Request Method GET Web Browser: Mozilla/5.0 (X11; U; Linux 1686; en-US; ty:1.9.2 Gecko/20101005 Fedora/3.6.10-1.fc14 Firefox/3.6.10 Query String: txtName=user%27%20or%20%27a%27=%27a6txtPasswd=t	2.10) user 👻

scenario)

Implementation of Prevention of XPath Injection Attack using PyBRAIN Machine Learning Library

	Login Form		Neural Network	Output	Click	to view the outp	ut	Analysis of Results Analysis of Results
UserName	user' or 'a'='a	epoch	0 total error	0.21833	avg weight	0.99168	\sim	Login Attempt: 4
Password	•••••	epoch	2 total error	0.13013	avg weight	0.99189	=	Result of Neural Network 1 (I/P: Error Code; O/P: Class)
Submit	Reset	epoch	4 total error	0.20026	avg weight	0.99243		('Input and output dimensions: ', 2, 3)
fakeismilev	v fakeismilev	epoch	5 total error 6 total error	0.214/3	avg weight avg weight	0.99399		('train error: 0.00%', ', test error: 0.00%')
fake123-45	56-7890 user 2	epoch epoch	7 total error 8 total error	0.22216 0.22222	avg weight avg weight	0.99623 0.998		Result of Neural Network 2 (I/P: Login attempt; O/P: Class) ('Number of training patterns: ', 4)
fakecmacr fakespeeds	supto3	epoch epoch	9 total error 10 total error	0.22222 0.22222	avg weight avg weight	1.0001 1.0029	~	('Input and output dimensions: ', 2, 2) ('train error: 0.00%', ', test error: 0.00%')

General A	rchitecture of the System		Attack Information	iew Log
Presentation fier Web browser Login form HTTP Response	Business fier	Data tier Real XML Document	Remote Port: 59968 Remote Address: 127.0.0.1 Request Method GET Web Browser: Mozilla/5.0 (X11; U; Linux i686; en-US; rx:1.9.2.10 Gecko/20101005 Fedora/3.6.10-1.fc14 <u>Firefox/3.6.10</u> Query String: <u>txtName=user%27%20or%20%27a%27=%27a&txtPasswd</u> =user %27%20or%20%27=%27= Server Time: Tue May 28 16:42:11 2013	ə) r
Username Password Submit	Resument Neural Network LSTM Network Classified?	False XML Document	Remote Port: 58141 Remote Address: 127.0.0.1 Request Method GET Web Browser: Mozilla/5.0 (X11; U; Linux i686; en-US; ry:1.9.2.10 Gecko/20101005 Fedora/3.6.10-1.fc14 <u>Firefox</u> /3.6.10 Query String: <u>txtName=6txtPasswd=</u> Server Time: Tue May 28 16:49:50 2013	9)
	Suspicious Invalid	Custom Error Messages	Remote Port: 59795 Remote Address: 127.0.0.1 Request Method GET Web Browser: Mozilla/5.0 (X11; U; Linux 1686; en-US; rx:1.9.2.10 Gecko/20101005 Fedora/3.6.10-1.fc14 <u>Firefox</u> /3.6.10 Query String: <u>txtName=user%27%20or%20%27a%27=%27a&txtPasswd</u> =use	0) r

Snapshots (fake login scenario)

Implementation of Prevention of XPath Injection Attack using PyBRAIN Machine Learning Library

Login Form		Neural Network	Output	Click	to view the outpu	ıt	Analysis of Results Analysis of Results	ults
UserName fakejsmiley	epoch	0 total error 1 total error	0.21833	avg weight avg weight	0.99168 0.99171		Login Attempt: 4	~
Password Submit Reset	epoch epoch epoch	2 total error 3 total error 4 total error	0.13013 0.15396 0.20026	avg weight avg weight avg weight	0.99189 0.99243 0.99314	=	Result of Neural Network 1 (I/P: Error Code; O/P: Class) ('Number of training patterns: ', 3) ('Input and output dimensions: ', 2, 3)	=
fake login successful	epoch epoch epoch epoch epoch	6 total error 7 total error 8 total error 9 total error 10 total error	0.2222 0.22216 0.22222 0.22222 0.22222 0.22222	avg weight avg weight avg weight avg weight avg weight avg weight	0.99529 0.99529 0.99623 0.998 1.0001 1.0029	~	<pre>('rain erfor: 0.00%, , test erfor: 0.00%) Result of Neural Network 2 (I/P: Login attempt; 0/P: Class) ('Number of training patterns: ', 4) ('Input and output dimensions: ', 2, 2) ('train error: 0.00%', ', test error: 0.00%'))</pre>	<

Conclusion

- Our solution offers improved security over existing methods by misleading the attackers to false resources and custom error pages
- Our results also show that the system accepts legitimate input although the user input may contain some special characters and rejects only truly malicious inputs.
- Our solution combines modular neural networks and count based validation approach to filter the malicious input
- Our solution has resulted in increased average detection rate of true positives and true negatives and decreased average detection rate of false positives and false negatives
- The security systems have to be successful every time. But attacker has to be successful only once.

[1] Thiage Matter Rosa, Altair Glive Santin, Andreia Malucelli, "Mitigating XML Injection Attack through Strategy based Detection System", IEEE Security and Privacy, 2011

- [2] Nuno Antunes, Nuno Laranjeiro, Marco Vieira, Henrique Madeira, "Effective Detection of SQL/XPath Injection Vulnerabilities in Web Services", IEEE International Conference on Services Computing, 2009
- [3]Nuno Laranjeiro, Marco Vieira, Henrique Madeira, "A Learning Based Approach to Secure Web Services from SQL/XPath InjectionAttacks", Pacific Rim International Symposium on Dependable Computing, 2010
- [4] V. Shanmughaneethi, R. Ravichandran, S. Swamynathan, "PXpathV: Preventing XPath Injection Vulnerabilities in Web Applications", International Journal on Web Service Computing, Vol.2, No.3, September 2011
- [5] CAPEC-83: XPath Injection, <u>http://capec.mitre.org/data/definitions/83.html</u> [Accessed on: 02/12/2012]
- [6] Mike W. Shields, Matthew C. Casey, "A theoretical framework for multiple neural network systems", 2008
- [7] Hanh H. NguyenÆ Christine W. Chan, "Multiple neural networks for a long term time series forecast", Springer, Neural Comput & Applic (2004) 13: 90–98
- [8] Anand, R., Mehrotra, K., Mohan C.K., Ranka S., "Efficient classification for multiclass problems

References

- [9] S. Hochreiter and J. Schmidhuber. "Long short-term memory. Neural Computation", 9 (8): 1735–1780, 1997.
- [10] Derek D. Monner, James A. Reggia, "A generalized LSTM-like training algorithm for second-order recurrent neural networks"
- [11] Anders Jacobsson, Christian Gustavsson, "Prediction of the Number of Residue Contacts in Proteins Using LSTM Neural Networks", Technical report, IDE0301, January 2003
- [12] P.A. Mastorocostas, "Resilient back propagation learning algorithm for recurrent fuzzy neural networks", ELECTRONICS LETTERS, Vol. 40 No. 1, 2004

[13] Martin Riedmiller, Rprop – Description and Implementation Details, Technical report, 1994

[14] Tom Schaul, Justin Bayer, Daan Wierstra, Sun Yi, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen Schmidhuber. "PyBrain", Journal of Machine Learning Research, 2010

[15] Bottle: Python Web Framework, <u>http://bottlepy.org/docs/dev/</u> [Accessed on: 05/04/2013]

[16] matplotlib, <u>http://matplotlib.org/contents.html</u>, [Accessed on: 06/07/2013]

