Introductory Scientific Computing with Python

Introduction, IPython and Plotting

FOSSEE

Department of Aerospace Engineering IIT Bombay

Mumbai, India

Acknowledgement

FOSSEE group (fossee.in) based at IIT Bombay and funded by The National Mission on Education through ICT, Ministry of HRD, India

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Checklist

- Editor we recommend Canopy
- IPython
- Oata files:
 - pendulum.txt
 - data.csv
- Images
 - lena.png

About the Tutorial

Intended Audience

 Engg., Mathematics and Science researchers with a reasonable programming background.

Goal: Successful participants will be able to

- Start using Python as plotting, computational tool.
- Use the basic libraries and tools for scientific computing with Python.

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Starting up ...

Start a terminal

Canopy command prompt (Tools menu)

On Terminal

\$ ipython --pylab

Running IPython

```
In []: print("Hello, World!")
Hello, World!

Exiting on the terminal
In []: ^D(Ctrl-D)
Do you really want to exit([y]/n)? y
```

IPython?

An enhanced Python interpreter

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Breaking out of Loops

Breaking out of loops

KeyboardInterrupt

Exercise

- Exit the IPython interpreter
- Close the terminal
- Restart the terminal (Canopy tools menu)
- Restart IPython using:
 - \$ ipython --pylab

10 m

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Important instructions

- For the first session, please do not experiment
- Follow along and type everything!
- Case matters
- Every character you type matters!

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

First Plot

```
In []: x = linspace(0, 2*pi, 50)
In []: plot(x, sin(x))
```

Walkthrough

```
x = linspace(start, stop, num)
returns num evenly spaced points, in the interval
[start, stop].
```

```
In []: x[0]
Out[]: 0.0
```

```
In []: x[49]
```

Out[]: 6.2831853071795862

Walkthrough ...

plot(x, y)

plots x and y using default line style and color

15 m

Important instructions

- Please do not close the plot windows or IPython
- For the first session, please do not experiment
- Follow along and type everything!
- Case matters
- Every character you type matters!

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Adding Labels

Another example

```
In []: clf()
```

Clears the plot area.

```
In []: y = linspace(0, 2*pi, 50)
In []: plot(y, sin(2*y))
In []: xlabel('y')
In []: ylabel('sin(2y)')
```

IPython tips

- Use TAB to complete command
- Try:

```
In []: pl<TAB>
```

History

- Up arrow and down arrow
- Left / right to move and edit
- Type some text and press up arrow:

```
In []: pl<Up Arrow>
```


Advanced IPython tips ...

- Search: Ctrl-r and start typing
- Ctrl-a: go to start of line
- Ctrl-e: go to end of line
- Ctrl-k: kill to end of line

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Title and Legends

```
In []: title('Sinusoids')
In []: legend(['sin(2y)'])
```


Legend Placement

```
In []: legend(['sin(2y)'], loc='center')
```



```
'best'
'right'
'left'
'center'
```

30 m

Important instructions

- Please do not close the plot windows or IPython
- For the first session, please do not experiment
- Follow along and type everything!
- Case matters
- Every character you type matters!

Showing it better

In []: plot(y, cos(y), 'r')

```
# See a red plot!
In []: clf()
```

In []: plot(y, sin(y), 'g', linewidth=2)

Annotating

In[]: annotate('local max', xy=(1.5, 1))

Saving & Closing

Recap

- linspace(start, end, num)
- plot(x, y)
- clf()
- vlabel, ylabel
- title, legend, annotate
- savefig
- close

40 m

Outline

- Checklist
- Starting up IPython
- Breaking out of loops
- Plotting
 - Drawing plots
 - Decoration
 - More decoration
- Multiple plots

Overlaid Plots

```
In []: y = linspace(0, 2*pi, 50)
In []: clf()
In []: plot(y, sin(y))
In []: plot(y, cos(y))
In []: xlabel('v')
In []: ylabel('f(y)')
In []: legend(['sin(y)', 'cos(y)'])
# Note how we made two legends
```

By default plots would be overlaid!

Plotting separate figures

```
In []: clf()
In []: figure(1)
In []: plot(y, sin(y))
In []: figure(2)
In []: plot(y, cos(y))
In []: savefig('cosine.png')
In []: figure(1)
In []: title('sin(y)')
In []: savefig('sine.png')
In []: close()
In []: close()
```

Get Axes lengths

Getting axes lengths

```
In []: xmin, xmax = xlim()
In []: ymin, ymax = ylim()
In []: print(xmin, xmax)
```

Set the axes limits

```
In []: xlim(xmin, 2*pi )
In []: ylim(ymin-0.2, ymax+0.2)
```

Get Axes lengths

Getting axes lengths

```
In []: xmin, xmax = xlim()
In []: ymin, ymax = ylim()
In []: print(xmin, xmax)
```

Set the axes limits

```
In []: xlim(xmin, 2*pi )
In []: ylim(ymin-0.2, ymax+0.2)
```

Axes lengths

IPython tip: documentation

Try:

```
In []: plot?
```

to get more information on plot

- Use arrow keys to scroll docs
- Note: exit help pager with "q"

IPython tip: source

• Try:
In []: plot??
to see the source code for plot

50 m

Review Problem

- Plot x, -x, $\sin(x)$, $x \sin(x)$ in range -5π to 5π
- Add a legend
- Annotate the origin
- Set axes limits to the range of x

