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Abstract
Performance is one of the most important aspects of any application. 
But “How to achieve it” is an “Answer” we look for. This is where “Multi-Threading” comes into 
picture. 
Like any other language, Python also supports Multi-Threading “but” before you consider this 
feature to achieve improved performance of your application “Think Twice”, yes you read it 
right “Think Thrice” and WHY is what I will be explaining in my Proposal/Paper/Presentation.

Outline:

1. What will you learn from this Proposal: 
 The “Concurrency Concept” and its relation to Multi-Threading.
 The “GIL” – Global Interpreter Lock concept and the mystery behind it.
 How GIL limits thread performance.
 “Where” and “Why” not to use Multi-Threading – The hidden truth of Python Multi-Threading.
 What is an alternative to it? – A brief overview of “Multi-Processing”

2. Why do you need to know this:
 Will help you in : “Decision making” , “Time Saving” , “Low Project Cost” , “Project 
Performance” and “HOW” - Next 
time when you consider Multi-Threading as an option for improving system performance , you
know beforehand exactly 
why / why not to use it.

3. The Case Study - CPU Bound and I/O bound task 
 How CPU bound task effects performance
 How I/O bound task improves performance

4. The Real Life Project Implementation:
CPU Bound and I/O bound task (one for each) - I will show you how in our project we 
improved application performance by over 
30-40% (Approximately)

A sample implementation using “threading” module
Time comparison using 1 and multiple threads. 
Details:
• Multithreaded Application to download the huge historical data files (csv format in GB’s) from
a website, read the files, do some slicing and dicing on the data and dump in the database.
• Analysis Processing Time: 
 When the multithreaded code had only download functionality implemented (I/O Task):
 Single Thread : 15 Seconds
 3 Threads : 9 Seconds



 When the multithreaded code had data processing/formatting functionality (CPU Bound Task)
along with 
download functionality implemented (I/O Task):
 Single Thread : 15 Seconds
 3 Threads : 30 Seconds

5. The before and after situation:
How the same code takes more time when made multi-threaded.

6. The “Common Mistakes” People make and how it can be avoided.
Explanation to the common mistakes made in problem identification while making an 
application Multi-Threaded and how to avoid it.

7. Q&A


