
Summer Fellowship Report

On

Package Management System

Submitted by

Aishwarya Sinha

Under the guidance of

Prof. Kannnan

Electronics Engineering Department

IIT Bombay

Mentor

Mr. Sumanto Kar

August 13, 2025

Acknowledgment

I am deeply grateful to my mentor Mr. Sumanto Kar for her invaluable guidance,
support, and encouragement throughout my internship with the FOSSEE Team at
IIT Bombay.

Their expertise and patience have been pivotal in my learning and professional
growth during this period.

I would also like to sincerely thank Prof. Kannan for their insightful guidance,
which has significantly shaped my understanding of open-source systems.

Additionally, I wish to express my heartfelt appreciation to my friends who
supported me in completing the screening tasks for this internship. Their
encouragement and assistance were crucial in overcoming challenges and achieving
milestones.

I remain dedicated to contributing to Package Management and other FOSSEE
initiatives. In the coming months, my primary focus will be on advancing Package
Management using Snap further.I am enthusiastic about the opportunities ahead
and eager to make meaningful contributions to these projects.

I am thankful to everyone who has been part of this journey, supporting and
inspiring me along the way. Your unwavering belief in my capabilities has made
this experience incredibly rewarding.

1

Contents

1 Introduction 4
1.1 Importance of Software Distribution in Linux 4
1.2 Brief Overview of Traditional Package Managers 5
1.3 Challenges with Traditional Package Management 5
1.4 The Rise of Universal Packaging Systems 5
1.5 Why Snap? . 5
1.6 Project Objective . 6

2 Understanding ESim 7
2.0.1 Why eSim Is Important . 7
2.0.2 How eSim Is Currently Distributed 8

2.1 Overview of Esim . 8
2.1.1 Origin and History . 8
2.1.2 Core Components . 9
2.1.3 Use Cases: Education, Industry, Research 9
2.1.4 Comparison with Commercial Tools 9

2.2 ESim installation :Existing method 10
2.2.1 eSim installation in Ubuntu OS 10
2.2.2 How to Run eSim : . 10

2.3 eSim installation in Windows OS . 10
2.4 Limitations of Existing Method . 11

2.4.1 Manual Setup Required . 11
2.4.2 Not Portable Hard to Update or Uninstall 11
2.4.3 Dependency Issues . 11
2.4.4 Lack of Sandboxing (Security Concern) 11

3 Introduction to Snap Packaging 12
3.1 What Are Snap Packages? . 12

3.1.1 What Makes Snap Unique? 12
3.1.2 Building Snaps with Snapcraft 13
3.1.3 Snap Store: Distribution Platform 13

3.2 What is snap . 13
3.2.1 Key Features . 13
3.2.2 Snap Ecosystem Overview . 13
3.2.3 Why These Components Matter 14

3.3 Benefits for Developers and Users . 14

2

4 eSim Installation and Architectural Analysis for Snap Packaging 16
4.1 Directory Structure . 16
4.2 Dependencies Table . 16
4.3 Main Installation Script . 17

4.3.1 install-eSim-22.04.sh . 17
4.4 Dependency Installation . 17
4.5 NGHDL Installation . 17

4.5.1 install-nghdl.sh . 17
4.5.2 install-nghdl-22.04.sh . 18

4.6 KiCad and Library Setup . 18
4.7 SKY130 PDK Installation . 19
4.8 Python Environment . 19
4.9 Application Launcher . 19
4.10 Uninstallation . 19
4.11 Build Configuration Considerations for Snap 20
4.12 Architectural Observations . 20

5 In-Depth Technical Analysis of the eSim/KiCad Snapcraft Config-
uration 21
5.1 Introduction . 21
5.2 Metadata and Project Definition . 22

5.2.1 Key Fields . 22
5.2.2 Why Core22? . 22

5.3 Filesystem Layout . 23
5.3.1 Purpose of Layout Mapping 23

5.4 Application Definitions (apps) . 23
5.4.1 KiCad Tools . 23
5.4.2 eSim Application . 24

5.5 Build Parts and Integration . 24
5.5.1 Build Tools . 24
5.5.2 KiCad Build Process . 24
5.5.3 eSim Integration . 24

5.6 Simulation Engines . 24
5.7 Runtime Libraries . 25
5.8 Environment Variables and Permissions 25

5.8.1 Graphics Settings . 25
5.8.2 Language Support . 25
5.8.3 Plugs . 25

5.9 Security and Confinement . 25
5.10 Build Flow Diagram . 25
5.11 Troubleshooting and Best Practices 27

6 Conclusion and Future Scope 28
6.1 References . 29

3

Chapter 1

Introduction

In the Linux ecosystem, traditional software installation methods—such as .deb or
.rpm packages—present several challenges for both developers and end users.
These formats depend heavily on the host system’s libraries and environment,
which often leads to dependency hell, fragmentation across distributions, and
complex version compatibility issues

Snap packages provide a modern alternative designed to tackle these problems.
Developed by Canonical, Snap introduces a self-contained, cross-distribution
packaging format that runs applications in sandboxed environments with all
necessary dependencies bundled inside . Additional benefits include:

• Automatic, atomic updates that occur seamlessly in the background and can
be rolled back if needed Wikipedia

• Enhanced security through controlled, confined execution—even without
elevated privileges Ask Ubuntu wafaicloud.com .

• Version flexibility, allowing users to stay on LTS releases while upgrading
specific apps independently, avoiding full-system updates Ask Ubuntu Reddit
.

• Consistent behavior across distributions, reducing compatibility headaches
for developers and enabling broader reach with fewer packaging variants
wafaicloud.com It’s FOS

In summary, this project aims to explore how Snap package management can
mitigate the shortcomings of traditional software deployment—introducing greater
portability, security, and maintainability, especially relevant in evolving contexts
like eSim environments.

1.1 Importance of Software Distribution in

Linux

Efficient software distribution is critical in the Linux ecosystem. It ensures
applications can be installed reliably, consistently, and across diverse environments

4

with minimal effort—facilitating everything from rapid deployment to user
accessibility.

1.2 Brief Overview of Traditional Package

Managers

Popular Linux package managers like APT (Advanced Package Tool) and YUM
(Yellowdog Updater, Modified) have long served as the backbone for software
installation and maintenance. They leverage centralized repositories to manage
dependencies and system updates, making them powerful system tools.

1.3 Challenges with Traditional Package

Management

However, conventional methods such as .deb or .rpm packages face notable
drawbacks:

• Dependency Hell: Conflicts arise when different applications require
incompatible versions of the same libraries.

• OS Coupling: Packages are often tied to specific distributions or versions,
reducing portability and complicating cross-distro support.

1.4 The Rise of Universal Packaging Systems

To tackle these limitations, universal packaging systems have emerged:

• Snap

• Flatpak

• AppImage These systems package applications along with their

dependencies, running in isolated environments and ensuring compatibility
across multiple distributions.

1.5 Why Snap?

Among these, Snap offers key advantages:

• Cross-distro compatibility: Works seamlessly on various Linux distributions.

5

• Sandboxed execution: Enhances security by isolating applications from the
system.

• Ease of use: Offers simple installation, atomic updates, and potential
rollbacks, all without complex dependency management.

1.6 Project Objective

The primary goal of this project is: To package eSim (an open-source

Electronic Design Automation tool) as a Snap application, making its
installation easier, safer, and more portable across different Linux
distributions. This approach aims to streamline eSim’s deployment,

enhancing usability for students, educators, and professionals who benefit
from its circuit design, simulation, and PCB layout capabilities
esim.fossee.org woset-workshop .

6

Chapter 2

Understanding ESim

eSim stands for Electronics Simulation,eSim (previously known as Oscad /
FreeEDA) is a free/libre and open-source EDA tool for circuit design,
simulation, analysis, and PCB design. It is an integrated tool built using
free/libre and open-source software such as KiCad, Ngspice, GHDL,
OpenModelica, Verilator, Makerchip, and SkyWater SKY130 PDK. eSim is
released under GNU General Public License

eSim offers similar capabilities and ease of use as any equivalent proprietary
software for schematic creation, simulation, and PCB design, without having
to pay a huge amount of money to procure licenses. Hence it can be an
affordable alternative to educational institutions and SMEs. It can serve as
an alternative to commercially available/licensed software tools like OrCAD,
PSpice, LTspice, Xpedition, and HSPICE. Feature of ESim:

Draw circuits using KiCad, create a netlist, and simulate using Ngspice.

Design PCB layouts and generate Gerber files using KiCad.

Add/Edit device models(Spice Models) and subcircuits using the Model
Builder and Subcircuit Builder tools

Perform Mixed-Signal Simulation.

Support for Ubuntu and Windows OS.

Interface with OpenModelica modeling software.

2.0.1 Why eSim Is Important

• Unified Functionality: Unlike many standalone alternatives, eSim combines
schematic capture, circuit simulation, and PCB layout into a single platform,
offering a full EDA workflow in one tool eSim woset-workshop .

7

• Accessible and Cost-effective: As a GPL-licensed project, eSim serves as
an affordable substitute to costly proprietary tools like OrCAD, PSpice, or
HSPICE—particularly valuable for educational institutions, researchers, small
enterprises, and students eSim woset-workshop . Rich Feature Set:

• Custom component modeling via Model Builder and Subcircuit Builder

• Mixed-signal simulation including digital modeling via Ngspice, GHDL, and
Verilog

• Interactive plotting and support for OpenModelica and PDK-driven workflows

• Import tools for converting proprietary schematics from PSpice or LTspice
into eSim’s format F-Si Wik.

• Educational Impact: eSim powers initiatives like the Circuit Simulation Project,
eSim Marathons, and the Spoken Tutorial program—training tens of thou-
sands of students and faculty and enabling hands-on learning without software
licensing barriers F-Si Wiki .

2.0.2 How eSim Is Currently Distributed

• Platform Support: eSim is officially released for Ubuntu Linux (including ver-
sions 22.04, 23.04, and 24.04 LTS) and Windows (versions 8, 10, and 11)
GitHub .

• Source Code Availability: The source code is publicly maintained on GitHub
under the GPL license, with the most recent version being eSim-2.5, released
on July 2, 2025 GitHub .

• Installation and Building: Pre-built installers are available for supported OSes.
For other distributions, users can consult the installers branch or the contri-
bution documentation to guide manual packaging and builds GitHub.

2.1 Overview of Esim

2.1.1 Origin and History

eSim—originally known as Oscad or FreeEDA—was developed under the Free
and Open Source Software for Education (FOSSEE) initiative at IIT Bom-
bay. FOSSEE, backed by India’s Ministry of Education, aims to promote
open-source software in technical education enotice.vtools.ieee.org electronics-
foru.com . eSim integrates well-known tools like KiCad, Ngspice, and GHDL

into a unified EDA suite. Over time, it expanded support to include mixed-
signal simulation, and even microcontroller simulation via C-coded instruction
modeling enotice.vtools.ieee.org eSim.

8

2.1.2 Core Components

eSim acts as a glue-layer around a set of powerful open-source tools:

• KiCad: Provides schematic capture (via EEschema), footprint assignment
(CvPCB), netlist generation, and PCB layout (PCBnew) electronicsforu.com
eSim .

• Ngspice: A robust mixed-signal SPICE simulator supporting AC/DC/tran-
sient analyses and a wide range of components Wikipedia .

• Model Subcircuit Builders: Let users create or edit discrete device models
(e.g., BJTs, MOSFETs, op-amps) and reusable circuit modules electronics-
foru.com +1 .

• OpenModelica: Supports advanced modeling and simulation workflows, in-
cluding optimization electronicsforu.com .

• Additional integrations: GHDL, Verilator, Makerchip, and the SkyWater SKY130
PDK are supported to extend capabilities in digital/mixed-signal domains
eSim .

2.1.3 Use Cases: Education, Industry, Research

• Education: eSim is actively used in training programs—like the Circuit Simu-
lation Project and mixed-signal design marathons—to empower students and
faculties. It enables migration from proprietary software in labs across engi-
neering colleges enotice.vtools.ieee.org eSim +1 .

• Cost-effective alternative: Being fully open source, eSim eliminates licensing
barriers, making it ideal for institutions and small-to-medium enterprises eSim
electronicsforu.com .

• Research and Development: Users leverage eSim’s versatility for mixed-signal
design, Modelica-based optimization, and even microcontroller integration eno-
tice.vtools.ieee.org .

2.1.4 Comparison with Commercial Tools

eSim positions itself as an open-source, budget-friendly alternative to propri-
etary EDA suites:

• Compared to LTspice, OrCAD, PSpice, Xpedition, HSPICE, eSim offers equiv-
alent schematic capture, simulation, and PCB design functionality—all with-
out licensing costs eSim eSim electronicsforu.com .

9

• While platforms like LTspice are industry staples with vast model libraries,
community feedback suggests that eSim-equipped workflows can still offer solid
simulation experiences—especially with reduced cost and full freedom eSim
Reddit .

2.2 ESim installation :Existing method

2.2.1 eSim installation in Ubuntu OS

• After downloading ESim, extract it using:

unzip eSim-2.5.zip

• Now change directories in to the top-level eSim directory (where this INSTALL
file can be found).

• To install ESim and other dependencies, run the following command :

chmod+ xinstall − eSim.sh ./install-eSim.sh –install

• To uninstall eSim and all of its components, run the following command :

./install − eSim.sh−−uninstall

2.2.2 How to Run eSim :

• Through Terminal

esim

• Double click eSim desktop icon

2.3 eSim installation in Windows OS

1. Download eSim for Windows OS from ”https://esim.fossee.in/”. Disable the
antivirus (if any).

2. If MinGW and/or MSYS is already installed in your machine, then remove it
from the PATH environment variable as it may interfere with eSim and
might not work as intended.

3. Now double click on eSim installer and then follow the instruction to install
eSim.

4. Hence the installation is completed.

5. To uninstall eSim and all of its components, run the uninstaller
”uninst-eSim.exe” located at top-level eSim directory (where this INSTALL
file can be found).

10

2.4 Limitations of Existing Method

2.4.1 Manual Setup Required

Installation of eSim—from downloading ZIP files on Ubuntu to extracting, running
shell scripts, and configuring environment dependencies—demands user intervention
at every step. Likewise, on Windows, users must manage GUI installers, disable
antivirus software, and deal with path conflicts—resulting in a time-consuming and
error-prone process.

2.4.2 Not Portable Hard to Update or Uninstall

Portability: Installation artifacts remain tied to specific OS versions (e.g., Ubuntu
18.04/20.04 or Windows builds), limiting portability across environments.

Updates Uninstallation: Without a package manager, users must manually track
new releases, re-run install scripts to upgrade, and remove files one-by-one to unin-
stall—introducing inconsistencies and clutter.

2.4.3 Dependency Issues

Despite efforts to bundle dependencies, installations may still clash with libraries
already present on the system (e.g., conflicting Python versions, KiCad or Ngspice
setups), leading to runtime errors or broken workflows.

2.4.4 Lack of Sandboxing (Security Concern)

eSim runs without isolation from the system. This raises security risks, including:

Global access to user files and system resources.

Greater vulnerability to supply-chain issues or interference with other installed soft-
ware.

No control over permission boundaries, elevating concerns especially in multi-user
or shared environments.

11

Chapter 3

Introduction to Snap Packaging

3.1 What Are Snap Packages?

Snap is a universal software packaging and deployment system developed by
Canonical for Linux-based systems. These packages, known as snaps, are
self-contained and bundled with all necessary dependencies—allowing applications
to run uniformly across diverse Linux distributions without modification
Wikipedia The New Stack .

Snap packages (commonly called snaps) are a modern, universal packaging format
developed by Canonical, designed to bundle applications and all their necessary
dependencies—libraries, runtimes, and binaries—into a single, self-contained
package that runs across various Linux distributions without modification

3.1.1 What Makes Snap Unique?

Containerized Packaging: Snaps are compressed using the SquashFS file system.
When installed, they are mounted in a read-only manner (e.g. at /snap/¡snap
name¿/¡revision¿/), ensuring consistency—applications behave exactly as built,
with no alterations Snapcraft .

Sandboxed Execution: Each snap operates in an isolated environment using
AppArmor for security. Interfaces govern controlled access to host resources,
reducing risk and enhancing protection against unwanted interference Wikipedia .

Cross-Distro Compatibility: Since snaps encapsulate their dependencies, they’re
distribution-agnostic by design—meaning a single snap works seamlessly across
Ubuntu, Fedora, Debian, and more (provided snapd is supported) Wikipedia
Reddit .

Seamless Updates Rollbacks: Snaps support transactional updates—only changes
are downloaded, minimizing bandwidth use, and ensuring atomic upgrades that
can be reverted instantly if needed Ask Ubuntu The New Stack .

12

3.1.2 Building Snaps with Snapcraft

Snapcraft is the official build tool for creating snap packages. It uses a declarative
snapcraft.yaml file to define build instructions, dependencies, metadata, and
execution parameters. Snapcraft builds within a controlled environment (e.g.,
using Multipass or LXD) so that the resulting package is reproducible across
platforms GitHub community.kde.org .

3.1.3 Snap Store: Distribution Platform

Once packed, snaps are distributed via the Snap Store—a centralized marketplace
where applications undergo build testing and optional malware scans. Users can
easily discover, install, and update applications using both command-line tools and
graphical app centers Wikipedia Snapcraft .

3.2 What is snap

Snap is a universal packaging format and deployment system for Linux, crafted by
Canonical. Snaps are self-contained, sandboxed applications that include all
needed dependencies, enabling consistent execution across different distributions
like Ubuntu, Fedora, Debian, and more Wikipedia Snapcraft .

3.2.1 Key Features

Self-Contained and Portable Snaps bundle all required libraries and binaries within
a compressed SquashFS package (.snap), ensuring the application runs uniformly
across Linux systems Wikipedia Wikipedia .

Secure and Sandboxed Snaps execute within a confined environment using
AppArmor, seccomp, namespaces, and cgroups. Interfaces grant controlled access
to system resources, reinforcing the principle of least privilege Ubuntu Wikipedia .

Automatic, Atomic Updates Rollbacks The daemon snapd checks for updates
multiple times daily, applying them atomically. If an upgrade fails, the system can
revert to the previous version safely Wikipedia Wikipedia Snapcraft .

Dependency-Free Execution Since each Snap includes the necessary dependencies,
there’s little to no risk of dependency conflict with system libraries Snapcraft
Medium .

3.2.2 Snap Ecosystem Overview

Snapcraft Command-line build tool for creating snap packages using a
snapcraft.yaml specification Ask Ubuntu documentation.ubuntu.com .

13

snapd Background daemon that handles installation, sandboxing, mounting, and
updating of Snaps Ask Ubuntu .

Snap store Central platform where developers publish Snaps; includes automated
testing and malware scanning for submitted packages Wikipedia .

3.2.3 Why These Components Matter

Snapcraft simplifies packaging—developers can describe builds declaratively and
build reproducible Snaps documentation.ubuntu.com Ubuntu .

snapd manages runtime behavior—handling updating, sandboxing, and system
integration smoothly Ask Ubuntu .

The Snap Store centralizes distribution, enhances discoverability, and adds a
security layer through automated checks Wikipedia .

3.3 Benefits for Developers and Users

Package Once, Run Anywhere Snaps eliminate the fragmentation of Linux
packaging. Developers can create a single package that runs consistently across
multiple distributions, sparing them from building and maintaining distro-specific
versions. “Snaps were designed to fix a common problem with Linux, dependency

hell . . . you create a single Snap package that will work on any Linux
distribution.”

Reduces Need for Root Access System Modifications Snaps encapsulate
everything they need, including dependencies. This reduces reliance on installing
system-wide libraries, minimizing conflicts and avoiding complex OS-level changes.
Moreover, once a developer is authenticated via snap login, users can install snaps
without root privileges.

Reliable Dependency Isolation By bundling all necessary libraries, snaps avoid the
infamous “dependency hell.” They operate independently of system libraries,
ensuring consistent behavior and fewer integration issues across environments.

Automatic Updates with Safe Rollback Snaps are updated atomically by
snapd—meaning updates are applied seamlessly and can be reverted if issues arise,
ensuring stability.

Enhanced Security via Sandboxing Snaps run under strict confinement using
AppArmor, which restricts system access and reduces security risks. Controlled
interfaces manage access to resources like audio or webcam, ensuring operations
remain secure and intrinsic to user expectations.

Ideal for Scientific Tools Like eSim Scientific and educational tools often span
diverse environments and dependency chains. Snap packaging simplifies
deployment—developers package once, and users across various Linux setups

14

benefit from consistent installation, minimized dependency conflicts, and secure
execution. For eSim, this means easier distribution, safer installations, and better
user experience without heavy system prerequisites.

15

Chapter 4

eSim Installation and
Architectural Analysis for Snap
Packaging

4.1 Directory Structure

This section describes the main folders and files in the eSim project.
Understanding the directory structure helps you locate scripts, libraries, and
source code quickly.

• install-eSim.sh: The main script that coordinates the installation process.

• install-eSim-scripts/: Contains scripts tailored for different Ubuntu
versions.

• library/: Holds essential libraries such as KiCad footprints and the
SKY130 PDK.

• nghdl/: Contains HDL simulation tools and their installation scripts.

• src/: The main source code for eSim, including the front-end and simulation
modules.

• Examples/: Sample projects to test and demonstrate eSim features.

4.2 Dependencies Table

This table lists all the required dependencies for building and running eSim. These
must be included in your Snap packaging configuration to ensure a successful build
and runtime environment.

Type Dependencies
System Packages make, gnat, llvm, llvm-dev, clang, zlib1g-dev,
libcanberra-gtk-module, libcanberra-gtk3-module, libxaw7, libxaw7-dev, autoconf,

16

g++, flex, bison, xterm, python3-psutil, python3-pyqt5, python3-matplotlib,
python3-distutils, python3-pip
Python Packages PyQt5, PyQt5-sip, matplotlib, watchdog, makerchip-app,
sandpiper-saas, hdlparse, pyhdlparser
Other KiCad (via PPA), NGHDL (GHDL, Verilator, ngspice), SKY130 PDK

4.3 Main Installation Script

4.3.1 install-eSim-22.04.sh

This script is the entry point for installing eSim. It calls various functions to set
up configuration files, install dependencies, and prepare the environment. Each
function is responsible for a specific part of the installation process.

Listing 4.1: Main Installation Steps

c r e a t eCon f i gF i l e # Sets up con f i gu r a t i on f i l e s f o r eSim
insta l lDependency # I n s t a l l s a l l r equ i r ed system and Python packages
i n s t a l lK i c ad # I n s t a l l s KiCad EDA too l
copyKicadLibrary # Adds custom KiCad l i b r a r i e s f o r eSim
in s t a l lNghd l # I n s t a l l s NGHDL s imu la t i on engine and dependenc ies
ins ta l lSky130Pdk # I n s t a l l s the SKY130 proce s s des ign k i t
c r ea t eDesk topSta r tSc r ip t # Creates a launcher f o r easy ac c e s s

4.4 Dependency Installation

This section shows the commands used to install all required system and Python
packages. These packages provide the foundation for running eSim and its
simulation engines. For Snap, these should be included in the ‘stage-packages‘ and
‘python-packages‘ sections.

Listing 4.2: System and Python Dependency Installation

sudo apt i n s t a l l −y python3−v i r tua l env xterm python3−p s u t i l python3−pyqt5 \
python3−matp lo t l i b python3−d i s t u t i l s python3−pip

pip i n s t a l l −−f o r c e−r e i n s t a l l −−no−cache−d i r PyQt5 PyQt5−s i p matp lo t l i b
pip3 i n s t a l l watchdog makerchip−app sandpiper−saas hd lpar se \

https : // github . com/hdl / pyhdlparser / t a r b a l l /master

4.5 NGHDL Installation

4.5.1 install-nghdl.sh

This script detects the Ubuntu version and selects the appropriate NGHDL
installation script. NGHDL is a simulation engine that integrates GHDL,
Verilator, and ngspice for digital and mixed-signal simulation.

17

Listing 4.3: NGHDL Installer Script

ge t ubuntu ve r s i on # Detects the cur r ent Ubuntu ve r s i on
r u n v e r s i o n s c r i p t # Runs the c o r r e c t i n s t a l l −nghdl−XX.XX. sh s c r i p t
S e l e c t s and runs i n s t a l l −nghdl −22.04. sh , e t c .

4.5.2 install-nghdl-22.04.sh

This script installs all dependencies for NGHDL, builds GHDL and Verilator from
source, and configures ngspice. It ensures that the simulation engines are correctly
installed and linked for eSim.

Listing 4.4: NGHDL Build and Install

sudo apt i n s t a l l −y make gnat llvm llvm−dev c lang z l ib1g−dev \
l i b canbe r ra−gtk−module l i bcanbe r ra−gtk3−module l ibxaw7 libxaw7−dev \
autoconf g++ f l e x b i son

Build and i n s t a l l GHDL
./ con f i gu r e −−with−llvm−c on f i g=/usr / bin / llvm−c on f i g
make −j$ (nproc)
sudo make i n s t a l l

Build and i n s t a l l V e r i l a t o r
. / c on f i gu r e
make −j$ (nproc)
sudo make i n s t a l l

Build and i n s t a l l NGHDL
. . / c on f i gu r e −−enable−xsp i c e −−d i sab l e−debug −−p r e f i x=$HOME/nghdl−s imu la tor / i n s t a l l d i r /
make −j$ (nproc)
make i n s t a l l
sudo ln −s f $HOME/nghdl−s imu la tor / i n s t a l l d i r / bin / ngsp i ce / usr /bin / ngsp i ce

4.6 KiCad and Library Setup

This section explains how custom KiCad libraries are extracted and installed.
These libraries provide additional symbols and footprints required for eSim
projects. Proper permissions are set to ensure KiCad can access these files.

Listing 4.5: KiCad Library Setup

ta r −xJf l i b r a r y / k i cadLibrary . ta r . xz −C l i b r a r y
cp l i b r a r y / k i cadLibrary / template /sym−l i b−t ab l e $HOME/ . c on f i g / kicad /8 .0/
sudo rsync −av l i b r a r y / k i cadLibrary /eSim−symbols / / usr / share / kicad / symbols /
sudo chown −R $USER:$USER /usr / share / kicad / symbols

18

4.7 SKY130 PDK Installation

The SKY130 PDK is an open-source process design kit for IC design. This section
shows how it is extracted and installed system-wide so that eSim and its
simulation engines can use it for advanced projects.

Listing 4.6: SKY130 PDK Installation

ta r −xJf l i b r a r y / sky130 fd pr . ta r . xz
sudo mkdir −p / usr / share / l o c a l /
sudo mv sky130 fd pr / usr / share / l o c a l /
sudo chown −R $USER:$USER /usr / share / l o c a l / sky130 fd pr /

4.8 Python Environment

To avoid conflicts with system Python packages, eSim uses a dedicated Python
virtual environment. All required Python packages are installed here, ensuring a
clean and reproducible setup.

Listing 4.7: Python Virtual Environment Setup

v i r tua l env $HOME/ . esim/env
source $HOME/ . esim/env/bin / a c t i v a t e
Al l Python packages i n s t a l l e d in t h i s environment

4.9 Application Launcher

This section describes how a launcher script and desktop entry are created. This
allows users to start eSim easily from the terminal or desktop environment,
improving usability.

Listing 4.8: Launcher Script Creation

echo ’#!/ bin /bash ’ > esim−s t a r t . sh
echo ”cd $eSim Home/ s r c / frontEnd” >> esim−s t a r t . sh
echo ” source $ c o n f i g d i r /env/bin / a c t i v a t e ” >> esim−s t a r t . sh
echo ”python3 Appl i ca t ion . py” >> esim−s t a r t . sh
sudo chmod 755 esim−s t a r t . sh
sudo cp −vp esim−s t a r t . sh / usr / bin / esim

4.10 Uninstallation

Uninstallation is important for cleaning up all files, directories, and packages
installed by eSim. This section lists the commands to remove everything, ensuring
no leftover files remain on the system.

Listing 4.9: Uninstallation Section

19

sudo rm −r f $HOME/ . esim $HOME/Desktop/esim . desktop / usr / bin / esim / usr / share / app l i c a t i o n s / esim . desktop
sudo apt purge −y kicad kicad−f o o t p r i n t s kicad− l i b r a r i e s kicad−symbols kicad−templates
sudo rm −r f / usr / share / kicad
sudo rm / etc /apt/ sour c e s . l i s t . d/ kicad ∗
rm −r f $HOME/ . c on f i g / kicad /6 .0
sudo rm −r $ c o n f i g d i r /env
sudo rm −R /usr / share / l o c a l / sky130 fd pr
NGHDL, GHDL, Ve r i l a t o r removal

4.11 Build Configuration Considerations for

Snap

• Stage Packages: All system dependencies must be listed in the
stage-packages section of snapcraft.yaml.

• Python Environment: Use python-packages or requirements.txt for
Python dependencies.

• Source Builds: GHDL, Verilator, and NGHDL must be built in the build
step; ensure all build tools are present.

• KiCad and Libraries: Custom libraries should be staged and installed in
appropriate directories.

• Environment Variables: Set paths for config, libraries, and binaries in
apps section.

• Desktop Integration: Use Snapcraft desktop helpers for launcher and
icons.

• Permissions: Snap confinement may require plugs for hardware access, file
system, and desktop integration.

• Uninstallation: Snap removal should clean up all user data and config files.

4.12 Architectural Observations

• All dependencies are mandatory and installed system-wide or in virtualenv.

• Source builds for GHDL, Verilator, NGHDL ensure compatibility.

• Symlinks and config files are used for easy access and configuration.

• Error handling and versioning are built into scripts.

• Snap packaging requires explicit staging and environment setup for all
components.

20

Chapter 5

In-Depth Technical Analysis of the
eSim/KiCad Snapcraft
Configuration

5.1 Introduction

This chapter delivers a comprehensive, section-by-section breakdown of the
Snapcraft configuration used to package the eSim and KiCad suite into a single
distributable application. It combines technical detail with practical context to
help new contributors and maintainers navigate, modify, and extend the Snap
without breaking functionality.
The analysis draws from the actual snapcraft.yaml file and official Snapcraft
best practices. We cover:

1. How metadata defines project identity.

2. The layout mapping that enables compatibility.

3. Application definitions for multiple GUI and CLI tools.

4. The modular parts build system.

5. Environment variables, runtime permissions, and confinement.

6. Build optimization strategies.

Tip: If you remember only one file name, let it be
snap/snapcraft.yaml. This is the blueprint of the entire packaging
process.

21

5.2 Metadata and Project Definition

Snapcraft metadata is more than just labels — it defines how the Snap interacts
with the system, the store, and the build environment.

5.2.1 Key Fields

• name: esim — The package identifier on the Snap Store. Must be unique.

• base: core22 — Targets Ubuntu Core 22, providing a stable, modern
runtime environment.

• version: ’0.1’ — Human-readable; can be replaced by automated
Git-based versioning.

• grade: stable — Signals readiness for public release. Development builds
use devel.

• confinement: strict — Enforces sandbox isolation, allowing only
explicitly declared access.

• adopt-info: esim — Dynamically imports build metadata from the main
part.

5.2.2 Why Core22?

Core22 ensures:

• Access to recent C++/Python features needed by KiCad/eSim.

• Compatibility with newer GTK/Qt libraries.

• Security patches aligned with Ubuntu LTS.

Watch out: Choosing an older base (e.g., core18) can lead to missing
libraries and runtime incompatibility.

22

5.3 Filesystem Layout

Certain applications (like KiCad) expect resources in hardcoded paths. The Snap’s
layout feature maps these paths to Snap-internal locations.

layout :
/ usr / share / kicad :

bind : $SNAP/usr / share / kicad

5.3.1 Purpose of Layout Mapping

• Mimics system-wide installation structure.

• Avoids modifying upstream code to change paths.

• Ensures icons, templates, and footprints are found without errors.

Example: KiCad searches for templates in
/usr/share/kicad/template. The layout binds this path to the
Snap’s packaged template directory.

5.4 Application Definitions (apps)

The apps section defines commands and entry points.

5.4.1 KiCad Tools

Each KiCad app — such as kicad, pcbnew, and eeschema — uses:

• A command that points to a custom launcher script.

• GNOME desktop extensions for theming and integration.

• A shared kicad env environment block.

• Desktop entries for GUI menus.

• Plugs for:

– File system (home, removable-media)

– Display (x11, wayland)

– Hardware acceleration (opengl)

23

5.4.2 eSim Application

The esim app:

• Loads Qt-specific paths (QT PLUGIN PATH).

• Sets PYTHONPATH for Python 3.10 site-packages.

• Grants browser-support for web-based features.

Tip: Always keep environment variables minimal to reduce conflicts.

5.5 Build Parts and Integration

Snapcraft builds are modular: each part handles fetching, building, and staging a
component.

5.5.1 Build Tools

• wxwidgets — Custom build for KiCad’s GUI.

• wxpython — Matches wxWidgets version for scripting.

• snapbuildtools — Common build helper scripts.

5.5.2 KiCad Build Process

1. Fetch KiCad source (kicad-6.0.0.tar.gz).

2. Build with CMake + Ninja.

3. Enable scripting and I18N.

4. Patch desktop files to point to Snap paths.

5.5.3 eSim Integration

• Copies source, examples, and images.

• Installs the SKY130 PDK.

5.6 Simulation Engines

The Snap includes:

• ghdl — VHDL simulation.

• verilator — Verilog simulation.

• nghdl-simulator — Mixed-signal simulation.

Each is built from source to ensure compatibility and avoid system library
mismatches.

24

5.7 Runtime Libraries

Runtime libraries (stage-packages) include:

• GUI libraries (libqt5widgets5, libgtk-3-0).

• Audio support (libasound2).

• X11/Wayland compatibility libraries.

5.8 Environment Variables and Permissions

5.8.1 Graphics Settings

• GDK BACKEND for GTK rendering.

• QT QPA PLATFORM for Qt apps.

5.8.2 Language Support

• PYTHONPATH — Python modules.

• PERL5LIB — Perl modules.

5.8.3 Plugs

• home, removable-media

• x11, wayland, opengl

• browser-support

5.9 Security and Confinement

Strict confinement:

• Limits file access to declared plugs.

• Prevents accidental modification of host files.

5.10 Build Flow Diagram

25

Parts Definition
(Define each compo-

nent of the Snap)

Build Stage
(Compile and as-

semble each part)

Stage
(Merge all compiled

parts into one directory)

Prime
(Filter and prepare fi-

nal files for packaging)

Pack into .snap file
(Ready for distribu-

tion and installation)

Figure 5.1: Snapcraft Build Flow

26

5.11 Troubleshooting and Best Practices

• Test builds in a clean LXD container.

• Keep build and runtime dependencies minimal.

• Document custom scripts.

• Use snap logs -f to debug runtime issues.

27

Chapter 6

Conclusion and Future Scope

The integration of Snap packaging for eSim and KiCad successfully streamlines
installation, dependency management, and cross-distribution deployment. By
creating a comprehensive snap/snapcraft.yaml configuration, all essential
components — including libraries, simulation tools, and design assets — are
bundled into a secure and portable package. Desktop integration, with application
icons and .desktop launchers, ensures a seamless user experience, while strict
confinement maintains system security and isolation. Testing confirmed that key
functionalities such as the GUI, schematic editor, and netlist generation operate
reliably within the Snap environment, validating Snap as a robust deployment
method for complex EDA applications.
Looking ahead, several improvements can enhance this packaging approach:

• Automated CI/CD Integration: Incorporating Snap builds into a
continuous integration pipeline for automated testing and publishing.

• Multi-architecture Support: Building for ARM and other architectures
to increase hardware compatibility.

• Size Optimization: Reducing package size through selective dependency
staging and compression.

• Feature Expansion: Including additional simulation backends and PCB
manufacturing plugins.

• Configuration Persistence: Enhancing user settings retention across Snap
updates.

• Extended GUI Testing: Automating GUI regression tests to maintain
stability after upstream updates.

Implementing these enhancements will further improve portability, maintainability,
and usability, ensuring the Snap package remains an efficient solution for
distributing advanced electronic design software.

28

6.1 References

• README.md, INSTALL files

• Official documentation: https://esim.fossee.in/

• Snapcraft Docs: https://snapcraft.io/docs

29

https://esim.fossee.in/
https://snapcraft.io/docs

	Introduction
	Importance of Software Distribution in Linux
	Brief Overview of Traditional Package Managers
	Challenges with Traditional Package Management
	The Rise of Universal Packaging Systems
	Why Snap?
	Project Objective

	Understanding ESim
	Why eSim Is Important
	How eSim Is Currently Distributed

	Overview of Esim
	 Origin and History
	Core Components
	Use Cases: Education, Industry, Research
	Comparison with Commercial Tools

	ESim installation :Existing method
	 eSim installation in Ubuntu OS
	How to Run eSim :

	eSim installation in Windows OS
	Limitations of Existing Method
	Manual Setup Required
	Not Portable Hard to Update or Uninstall
	Dependency Issues
	Lack of Sandboxing (Security Concern)

	Introduction to Snap Packaging
	What Are Snap Packages?
	What Makes Snap Unique?
	Building Snaps with Snapcraft
	Snap Store: Distribution Platform

	What is snap
	Key Features
	Snap Ecosystem Overview
	Why These Components Matter

	Benefits for Developers and Users

	eSim Installation and Architectural Analysis for Snap Packaging
	Directory Structure
	Dependencies Table
	Main Installation Script
	install-eSim-22.04.sh

	Dependency Installation
	NGHDL Installation
	install-nghdl.sh
	install-nghdl-22.04.sh

	KiCad and Library Setup
	SKY130 PDK Installation
	Python Environment
	Application Launcher
	Uninstallation
	Build Configuration Considerations for Snap
	Architectural Observations

	In-Depth Technical Analysis of the eSim/KiCad Snapcraft Configuration
	Introduction
	Metadata and Project Definition
	Key Fields
	Why Core22?

	Filesystem Layout
	Purpose of Layout Mapping

	Application Definitions (apps)
	KiCad Tools
	eSim Application

	Build Parts and Integration
	Build Tools
	KiCad Build Process
	eSim Integration

	Simulation Engines
	Runtime Libraries
	Environment Variables and Permissions
	Graphics Settings
	Language Support
	Plugs

	Security and Confinement
	Build Flow Diagram
	Troubleshooting and Best Practices

	Conclusion and Future Scope
	References

