
FOSSEE Summer Fellowship Report
On

Unit Testing and GUI Development for Osdag

Submitted by

Prince Sahu

4th Year B.Tech Student, Department of Computer Science and Enginnering

Vellore Institute of Technology

Bhopal

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

August 19, 2025

Acknowledgments

• I would like to express my sincere gratitude to all those who supported and guided

me throughout my internship with Osdag. This experience has been invaluable for

my professional development in structural engineering software.

• My deepest appreciation goes to the entire Osdag team for their mentorship, par-

ticularly to Ajmal Babu M. S., Ajinkya Dahale, and Parth Karia for their patient

guidance and technical expertise during my project work.

• I am honored to acknowledge the leadership of Prof. Siddhartha Ghosh, Principal

Investigator of Osdag from the Department of Civil Engineering at IIT Bombay,

for creating this impactful open-source initiative.

• Special thanks to Prof. Kannan M. Moudgalya, FOSSEE Project Investigator from

the Department of Chemical Engineering at IIT Bombay, for his vision in supporting

open-source engineering education.

• I gratefully acknowledge the support from FOSSEE managers Usha Viswanathan

and Vineeta Parmar, along with their entire team, for creating opportunities that

bridge academia and practical software development.

• This project was made possible through the support of the National Mission on

Education through Information and Communication Technology (ICT), Ministry

of Education (MoE), Government of India.

• I extend my thanks to VIT Bhopal University, particularly to Dr. M.Manimaran,

Program Chair of E-commerce Technology, for fostering an environment that en-

courages practical learning through such internship opportunities.

1

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Problem Statement . 10

2.2 Approach and Implementation . 10

2.2.1 Task 1: Core calculation engine 10

2.2.2 Task 2: Database and configuration 11

2.2.3 Task 3: GUI (PyQt5) . 11

2.2.4 Task 4: Advanced features (planned and partial) 11

2.2.5 Task 5: Code quality and documentation 11

2.3 Outcomes . 11

2.4 Notes on code and standards . 12

3 OSI File Loading Workflow Development 13

3.1 Task Overview: Problem Statement . 13

3.2 Current System Architecture Analysis . 13

3.2.1 OSI File Structure and Format 13

3.2.2 Key System Components Identified 14

3.3 Technical Implementation and Workflow 14

3.3.1 File Loading Process . 14

3.3.2 Data Processing Pipeline . 14

3.4 Unit Testing Development . 14

3.4.1 Testing Framework Implementation 14

2

3.4.2 Test Case Categories . 15

3.5 Technical Challenges and Solutions . 15

3.5.1 Dependency Management . 15

3.5.2 Data Validation . 15

3.6 Implementation Deliverables . 15

3.6.1 Code Documentation . 15

3.6.2 Testing Infrastructure . 16

3.7 Professional Development Outcomes . 16

3.7.1 Technical Skills Acquired . 16

3.7.2 Project Management Experience 16

3.8 Expected Impact and Future Work . 16

3.8.1 Software Quality Improvement . 16

3.8.2 Knowledge Transfer . 17

4 Fin Plate Connection Validation and Testing 18

4.1 Task Overview: Problem Statement . 18

4.2 Technical Implementation Framework . 18

4.2.1 Test Data Structure . 18

4.2.2 Testing Architecture . 19

4.3 Implementation Details . 19

4.3.1 Core Testing Functions . 19

4.3.2 Validation Categories . 19

4.4 Testing Methodology . 19

4.4.1 Arrange-Act-Assert Pattern . 19

4.4.2 Error Handling and Tolerance . 20

4.5 Validation Results and Findings . 20

4.5.1 Input Validation Success . 20

4.5.2 Output Validation Results . 20

4.6 Technical Challenges and Solutions . 20

4.6.1 Data Format Compatibility . 20

4.6.2 Precision and Tolerance . 21

4.6.3 Dependency Management . 21

4.7 Code Quality and Documentation . 21

3

4.7.1 Test Code Structure . 21

4.7.2 Maintainability Features . 21

4.8 Professional Development Outcomes . 21

4.8.1 Technical Skills Acquired . 21

4.8.2 Engineering Software Development 22

4.9 Impact and Future Applications . 22

4.9.1 Software Quality Enhancement 22

4.9.2 Knowledge Transfer . 22

4.9.3 Extensibility . 22

5 Conclusions 23

5.1 Tasks Accomplished . 23

5.1.1 Task: Fin Plate Connection Validation and Testing Framework . . 23

5.1.2 Technical Implementation Achievements 24

5.2 Skills Developed . 24

5.2.1 Technical Skills . 24

5.2.2 Professional Skills . 25

5.2.3 Personal Development . 26

5.3 Impact and Contributions . 27

5.4 Future Recommendations . 27

5.5 Technical Achievements . 27

5.6 Conclusion . 28

A Appendix 29

A.1 Work Reports . 29

Bibliography 32

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

I attempted to develop a Python-based tool for structural steel design calculations as per

IS 800:2007, focusing on bolted connections and tension member design. The intended

deliverable combined a modular calculation engine, a small SQLite datastore, and a PyQt5

graphical user interface (GUI), with results exportable to reports. While key components

were initiated, the end-to-end workflow was not fully successful; this chapter documents

what was built, what worked, gaps observed, and the way forward.

2.2 Approach and Implementation

2.2.1 Task 1: Core calculation engine

I structured the calculation engine into small, testable units for butt-joint bolted connec-

tions and tension members. The goal was to compute plate requirements, bolt capacities

(shear, bearing, combined effects), and reduction factors (slip, bearing, shear), while

keeping code readable and maintainable. Intermediate abstractions were kept near do-

main terms (for example, net area, bolt bearing capacity, reduction factor slip)

to make verification against IS 800:2007 clauses straightforward.

10

2.2.2 Task 2: Database and configuration

A lightweight SQLite schema was drafted to hold steel grades (yield/ultimate strengths),

bolt series (diameters, strengths), and detailing parameters (edge distances, pitch ranges)

alongside configurable design constants. The intent was for the engine to fetch author-

itative values from this store, reducing hard-coding and improving traceability during

audits.

2.2.3 Task 3: GUI (PyQt5)

A prototype PyQt5 interface was created with a tabbed layout for grouping inputs: ma-

terial and member data, loading and factors, and connection geometry. The UI scaffold

included guarded inputs (type and range checks), context-sensitive help text, and a space

reserved for real-time design feedback. The layout was designed for progressive disclosure

so that novice users could proceed step-by-step without being overwhelmed.

2.2.4 Task 4: Advanced features (planned and partial)

Early versions of optimisation routines were outlined for automatic bolt selection and

cover-plate sizing. A results panel was planned for structured output: calculated ca-

pacities, utilisation ratios, and compliance notes tied to relevant IS 800:2007 clauses.

The long-term idea was to connect to CAD generation and a report template, but these

remained stubs during the screening task.

2.2.5 Task 5: Code quality and documentation

The codebase followed a layered organisation separating UI, calculations, and data ac-

cess. I adopted consistent naming, docstrings for public functions, and pytest-ready test

skeletons. Input validation and exception handling were drafted to surface user-facing

messages in the GUI while preserving stack traces in logs for debugging.

2.3 Outcomes

- A workable calculation skeleton exists for key checks in bolted butt joints and tension

members, with clear placeholders where verification is pending. - A minimal SQLite

11

dataset and access layer are in place to centralise material and fastener properties. - The

PyQt5 UI scaffold compiles and renders, with validated inputs and a reserved area for

outputs. - Complete end-to-end design, including fully verified outputs, was not achieved

within the screening window.

2.4 Notes on code and standards

All code identifiers and literals are shown in monospaced typewriter font, for example

bolt shear capacity, IS 800:2007, SQLite, and PyQt5. Indian English spellings are

used throughout (for example, optimisation, behaviour, modelling) except where external

API identifiers dictate otherwise.

12

Chapter 3

OSI File Loading Workflow Develop-

ment

3.1 Task Overview: Problem Statement

The task involved developing comprehensive unit testing capabilities for the Osdag (Open

Steel Design and Graphics) software, specifically focusing on the OSI (Osdag Input) file

loading mechanism. The objective was to understand the complete workflow of OSI file

processing in Osdag, develop automated testing procedures for file loading functionality,

ensure proper data mapping between OSI files and internal variables, and create robust

test cases for different connection types (Fin Plate, Cleat Angle, Tension Welded).

3.2 Current System Architecture Analysis

3.2.1 OSI File Structure and Format

The OSI files serve as standardised input files for Osdag design modules with YAML-based

configuration files using the ‘.osi‘ extension. The data structure follows a hierarchical

dictionary format containing design parameters, where each OSI file corresponds to a

specific design module. Parameter mapping provides direct correlation between file keys

and UI input fields, ensuring seamless data flow.

13

3.2.2 Key System Components Identified

The key system components include the File Handler implemented in ui template for mac.py

(or ui template.py on other platforms), the Data Processor in fin plate connection.py

for connection-specific processing, the UI Controller through the setDictToUserInputs()

function for interface updates, and the Validation Engine for module matching and data

integrity checks.

3.3 Technical Implementation and Workflow

3.3.1 File Loading Process

The OSI file loading workflow follows a systematic four-step process. The User Interface

Trigger occurs when users select ‘File -¿ Load input‘ from the Osdag GUI, followed by

a File Selection Dialog where the system opens a file dialog for ‘.osi‘ file selection. Data

Parsing involves reading the YAML file and converting it to a Python dictionary (‘uiObj‘),

and Module Validation verifies system compatibility with the current design context.

3.3.2 Data Processing Pipeline

The data processing pipeline encompasses File Reading through the loadDesign inputs()

function that handles file I/O operations, Data Mapping via the set input values()

function that maps OSI keys to internal variables, UI Synchronisation through setDictToUserInputs()

that updates interface fields, and State Management that maintains consistency between

file data and UI state.

3.4 Unit Testing Development

3.4.1 Testing Framework Implementation

I developed comprehensive unit testing procedures for OSI file functionality covering Fin

Plate, Cleat Angle, and Tension Welded connection types. The test coverage includes

5 OSI files per connection type with corresponding Excel validation sheets, utilising the

14

Python unittest framework with mock objects. Validation criteria encompass values

calculation, GUI population, CAD generation, and report generation.

3.4.2 Test Case Categories

The test case categories include Value Calculation Tests that verify mathematical ac-

curacy of design calculations, GUI Functionality Tests that ensure proper population

of output fields, CAD Generation Tests that validate 3D model creation without OCC

dependency issues, and Report Generation Tests that confirm LaTeX report creation

functionality.

3.5 Technical Challenges and Solutions

3.5.1 Dependency Management

The challenge of managing complex dependencies for different connection types was ad-

dressed through implementing mock objects to isolate testing components. This solution

improved test reliability and reduced external dependencies, resulting in more robust

testing procedures.

3.5.2 Data Validation

The challenge of ensuring data integrity across different OSI file formats was resolved

by developing standardised validation procedures for each connection type. This solu-

tion ensures consistent data handling across all modules and improves overall system

reliability.

3.6 Implementation Deliverables

3.6.1 Code Documentation

The code documentation includes comprehensive workflow documentation for the OSI

file loading process, detailed function mapping between OSI keys and internal variables,

15

and comprehensive error handling documentation with common issues and resolution

procedures.

3.6.2 Testing Infrastructure

The testing infrastructure comprises a complete automated test suite for OSI file func-

tionality, a curated collection of OSI files and validation data in the test data repository,

and continuous integration setup through GitHub workflow for automated testing.

3.7 Professional Development Outcomes

3.7.1 Technical Skills Acquired

The technical skills acquired include deep understanding of Osdag’s modular design

through software architecture experience, proficiency with unit testing and automation

frameworks, version control expertise through Git and GitHub collaboration workflows,

and technical writing skills for software documentation.

3.7.2 Project Management Experience

The project management experience encompasses working within team deadlines and re-

quirements through task coordination, regular updates and progress reporting to super-

visors, debugging complex software issues and implementing solutions through problem

solving, and ensuring code quality and test coverage standards through quality assurance

practices.

3.8 Expected Impact and Future Work

3.8.1 Software Quality Improvement

The software quality improvements include enhanced testing coverage that reduces soft-

ware bugs, improved maintainability through well-documented codebase that facilitates

future development, enhanced user experience through improved file loading reliability,

and accelerated development cycles through automated testing.

16

3.8.2 Knowledge Transfer

The knowledge transfer outcomes include comprehensive workflow documentation for

future developers, established testing standards for the Osdag project, and test cases that

serve as learning resources for new team members, ensuring continuity and knowledge

preservation within the development team.

17

Chapter 4

Fin Plate Connection Validation and

Testing

4.1 Task Overview: Problem Statement

The task involved developing comprehensive validation procedures for Fin Plate connec-

tion calculations in the Osdag software. The objective was to verify the accuracy of both

input processing and output generation by cross-referencing results with standardised test

data. The specific goals were to verify input value processing from OSI files in Fin Plate

connections, validate output calculation accuracy against Excel reference data, develop

automated testing procedures for 5 different test scenarios, and ensure data integrity

across the entire calculation pipeline.

4.2 Technical Implementation Framework

4.2.1 Test Data Structure

The validation framework utilised two primary data sources: OSI Files consisting of 5

standardised Fin Plate connection input files (FinPlateTest1.osi through FinPlateTest5.osi),

an Excel Validation Sheet containing comprehensive expected output values for each test

case, and Data Mapping providing direct correlation between OSI input parameters and

Excel output expectations.

18

4.2.2 Testing Architecture

I developed a robust testing framework using Python’s pytest library with automated

test execution for multiple OSI files through test orchestration, functions to parse both

OSI and Excel data sources for data extraction, comparison algorithms with tolerance

handling for floating-point values through validation logic, and detailed mismatch iden-

tification and reporting through error reporting mechanisms.

4.3 Implementation Details

4.3.1 Core Testing Functions

The implementation included several key functions for comprehensive validation. Data

Loading was handled through get expected from excel() which extracts expected val-

ues from Excel validation sheet, Result Processing via extract results from output()

that converts calculation outputs to comparable format, Parameterised Testing for auto-

mated test execution across all 5 OSI files, and Individual Test Cases providing detailed

validation for specific calculation components.

4.3.2 Validation Categories

The testing framework covered multiple aspects of Fin Plate connection calculations

including Plate Properties validation for thickness, height, and length, Weld Specifications

for size, strength, and stress calculations, Bolt Characteristics covering diameter, grade,

shear, bearing, and total capacity, Member Specifications for supported and supporting

section designations, Load Conditions for shear and axial load processing, and Material

Properties for grade specifications and connector materials.

4.4 Testing Methodology

4.4.1 Arrange-Act-Assert Pattern

I implemented the standard testing pattern for reliable validation where Arrange involves

loading OSI file data, creating FinPlateConnection instance, and setting input values, Act

19

executes calculation methods and extracts output results, and Assert compares calculated

values with Excel reference data using tolerance-based comparison.

4.4.2 Error Handling and Tolerance

The error handling and tolerance mechanisms include floating point comparison through

tolerance-based comparison (1e-2) for numerical values, missing data handling with grace-

ful handling of missing OSI or Excel files, and detailed error reporting providing specific

identification of mismatched values and their locations.

4.5 Validation Results and Findings

4.5.1 Input Validation Success

I successfully verified that input values from OSI files were correctly processed. Data

Mapping ensured all OSI file parameters correctly mapped to internal variables, Type

Conversion provided proper handling of string and numerical data types, and Default

Values were correctly applied for missing parameters.

4.5.2 Output Validation Results

Comprehensive validation of calculation outputs against Excel reference data confirmed

that Plate Calculations for thickness, height, and length values matched expected results,

Weld Calculations for size, strength, and stress values were validated successfully, Bolt

Capacity calculations for shear, bearing, and total capacity were verified, and Member

Properties including section designations and material properties were confirmed.

4.6 Technical Challenges and Solutions

4.6.1 Data Format Compatibility

The challenge of different data formats between OSI files (YAML) and Excel sheets was

resolved by developing standardised data extraction and mapping functions, resulting in

seamless integration between different data sources.

20

4.6.2 Precision and Tolerance

The challenge of floating-point precision differences between calculation methods was ad-

dressed through implementing tolerance-based comparison with configurable thresholds,

ensuring reliable validation without false positives due to precision differences.

4.6.3 Dependency Management

The challenge of managing complex dependencies for CAD and report generation was

resolved by implementing try-catch blocks for optional functionality testing, resulting in

robust testing that doesn’t fail due to missing optional dependencies.

4.7 Code Quality and Documentation

4.7.1 Test Code Structure

The test code structure features modular design with separate functions for data loading,

processing, and validation, parameterised testing for efficient testing of multiple scenarios

with single test function, clear documentation with comprehensive comments explaining

each testing step, and descriptive error messages for easy debugging.

4.7.2 Maintainability Features

The maintainability features include configurable parameters for easy modification of

tolerance values and file paths, extensible framework structure that allows addition of

new test cases, and proper Git integration with meaningful commit messages for version

control.

4.8 Professional Development Outcomes

4.8.1 Technical Skills Acquired

The technical skills acquired include proficiency with pytest and automated testing method-

ologies through testing frameworks, experience with YAML parsing, Excel data extrac-

tion, and pandas through data processing, understanding of verification and validation

21

processes through software validation, and implementation of robust error handling and

reporting mechanisms.

4.8.2 Engineering Software Development

The engineering software development experience encompasses deep understanding of

Fin Plate connection calculations through structural engineering knowledge, knowledge

of modular software design and testing through software architecture, experience with

comprehensive testing procedures through quality assurance, and technical writing skills

for test procedures and results through documentation.

4.9 Impact and Future Applications

4.9.1 Software Quality Enhancement

The software quality enhancement outcomes include validated calculation accuracy for

Fin Plate connections that improves reliability, established testing framework for fu-

ture development that enhances maintainability, verified output accuracy for engineering

applications that builds user confidence, and automated testing that reduces manual

verification time and improves development efficiency.

4.9.2 Knowledge Transfer

The knowledge transfer outcomes include established procedures for connection valida-

tion through testing standards, comprehensive test documentation for future reference,

demonstrated proper testing methodologies for engineering software through best prac-

tices, and test cases that serve as examples for new developers through training material.

4.9.3 Extensibility

The extensibility features include testing structure that can be adapted for other connec-

tion types through template framework, framework support for continuous integration

and automated testing through automation potential, and methodology that can be ex-

tended to other Osdag modules through validation expansion.

22

Chapter 5

Conclusions

5.1 Tasks Accomplished

During this internship, I successfully completed a major task focused on developing com-

prehensive unit testing and validation procedures for the OSDAG software’s Fin Plate

connection module. This task involved extensive analysis, implementation, testing, and

documentation phases that significantly enhanced the software’s reliability and quality

assurance capabilities.

5.1.1 Task: Fin Plate Connection Validation and Testing Frame-

work

The primary task focused on developing comprehensive validation procedures for Fin

Plate connection calculations in the OSDAG software. Key accomplishments included

automated testing implementation through developing a complete pytest-based testing

framework for validating Fin Plate connection calculations, data validation system cre-

ation with robust validation procedures for cross-referencing OSI file inputs with Excel

reference data, parameterised testing implementation for efficient testing across 5 dif-

ferent test scenarios with automated execution, error handling and tolerance through

building comprehensive error handling mechanisms with tolerance-based comparison for

floating-point values, and integration with existing system by successfully integrating the

testing framework with the existing OSDAG calculation engine.

This task resulted in a reliable and comprehensive testing system that ensures calcu-

23

lation accuracy and data integrity for Fin Plate connections, significantly enhancing the

software’s reliability for engineering applications.

5.1.2 Technical Implementation Achievements

The implementation phase involved several critical technical achievements including OSI

file processing through developing automated procedures for loading and processing OSI

(Osdag Input) files containing design parameters, Excel data integration by creating

seamless integration between YAML-based OSI files and Excel validation sheets, calcu-

lation validation implementation for comprehensive validation of plate properties, weld

specifications, bolt characteristics, and member specifications, arrange-act-assert pattern

establishment following industry-standard testing patterns, and continuous integration

setup through configuring GitHub workflows for automated testing and quality assur-

ance.

This technical foundation provides a robust framework for future testing initiatives

and ensures the reliability of engineering calculations in the OSDAG platform.

5.2 Skills Developed

Throughout this internship, I developed a comprehensive set of technical and professional

skills that will be invaluable for my future career in software development and quality

assurance engineering.

5.2.1 Technical Skills

Programming and Software Development

I gained advanced proficiency in Python development, including pytest framework, au-

tomated testing, and data processing. The experience enhanced my expertise in pytest,

parameterised testing, and automated test execution. I developed skills in YAML pars-

ing, Excel data extraction using pandas, and data validation. Version control skills were

enhanced through Git version control, collaborative development, and meaningful com-

mit practices. I learned to implement robust error handling and reporting mechanisms

for complex systems.

24

Software Testing and Quality Assurance

I developed comprehensive understanding of unit testing principles, test case design, and

automated testing methodologies. The experience provided expertise in creating valida-

tion systems for engineering calculations and skills in ensuring data consistency across

different file formats and systems. I learned to implement automated testing procedures

for continuous integration and developed understanding of code quality metrics and test

coverage analysis.

Structural Engineering Software

I gained comprehensive understanding of the OSDAG software architecture and Fin Plate

connection calculations. The experience developed skills in validating complex structural

engineering calculations and understanding of Fin Plate connection design principles

and validation requirements. I learned to implement validation procedures according

to engineering standards and developed expertise in cross-verifying calculation results

with reference data.

Software Engineering Practices

I developed strong practices in writing clean, maintainable, and well-documented test

code. The experience enhanced skills in systematic testing, debugging, and quality assur-

ance. I learned to create comprehensive technical documentation for testing procedures

and gained expertise in designing modular and extensible testing frameworks.

5.2.2 Professional Skills

Project Management

I developed ability to break down complex testing projects into manageable compo-

nents through task planning. Time management skills were enhanced in managing test-

ing schedules and meeting quality assurance deadlines. Problem-solving skills improved

through tackling complex validation challenges, and I gained expertise in creating com-

prehensive test documentation and validation reports.

25

Communication and Collaboration

Technical communication improved through ability to communicate complex testing con-

cepts clearly and effectively. Team collaboration skills were enhanced through working

within development teams and coordinating with supervisors. I developed skills in re-

viewing test code and providing feedback on testing implementations, and learned to

effectively share testing methodologies and best practices with team members.

Industry Knowledge

I gained deep understanding of software testing principles and quality assurance processes

in the software testing domain. The experience provided industry-standard practices

for testing engineering software and comprehensive understanding of QA processes in

software development. I learned to design validation systems with engineering accuracy

requirements in mind.

5.2.3 Personal Development

Adaptability and Learning

I enhanced ability to quickly learn new testing frameworks, data formats, and domain

knowledge through rapid learning. Adaptability developed through flexibility in adapting

to changing testing requirements and project priorities. Continuous improvement mindset

was cultivated in continuous learning and skill development in testing, and I learned to

think creatively and propose innovative solutions to complex validation problems.

Professional Growth

I gained confidence in tackling complex testing challenges independently through con-

fidence building. Leadership qualities developed through taking ownership of testing

components. Professional ethics understanding enhanced through understanding of pro-

fessional responsibility in software testing, and I gained clarity on career goals and the

path forward in software testing and quality assurance.

26

5.3 Impact and Contributions

The work completed during this internship has made significant contributions to the OS-

DAG software platform’s reliability and quality assurance. The comprehensive testing

framework ensures calculation accuracy for Fin Plate connections, enhancing software

reliability. Automated testing procedures reduce manual verification time and improve

consistency, improving quality assurance. Robust validation systems ensure data consis-

tency across different file formats and sources, ensuring data integrity. Verified calculation

accuracy enhances user confidence in engineering applications, and I contributed to the

overall code quality and maintainability of the testing infrastructure.

5.4 Future Recommendations

Based on the experience gained during this internship, several recommendations can be

made for future development. The validation framework could be extended to other

connection types (Cleat Angle, Tension Welded) following the same methodology. Fur-

ther automation of testing procedures could improve development workflow efficiency

through continuous integration enhancement. Additional performance testing could be

implemented to ensure software efficiency for large-scale projects. GUI testing could be

integrated to ensure complete end-to-end validation, and comprehensive testing docu-

mentation could be created for future developers and users.

5.5 Technical Achievements

The technical implementation demonstrated several key achievements including param-

eterised testing through successfully implementing parameterised testing across multiple

OSI files with automated execution, data format integration by seamlessly integrating

YAML-based OSI files with Excel validation data, tolerance-based comparison imple-

mentation of sophisticated floating-point comparison algorithms with configurable tol-

erance, error handling through building comprehensive error handling mechanisms for

missing files and data inconsistencies, and modular design creation of extensible testing

framework that can be adapted for other connection types.

27

5.6 Conclusion

This internship has been an invaluable learning experience that has significantly enhanced

my technical skills, professional development, and understanding of software testing and

quality assurance in engineering software. The comprehensive testing framework devel-

oped for Fin Plate connections has not only contributed to the OSDAG software plat-

form’s reliability but has also provided me with practical experience in real-world software

testing and validation.

The skills and knowledge gained during this internship will serve as a strong founda-

tion for my future career in software development and quality assurance, particularly in

the field of engineering software testing. The experience of working on a complex, real-

world testing application has provided insights that cannot be gained through academic

study alone.

I am grateful for the opportunity to contribute to such an important engineering

software platform and look forward to applying the skills and knowledge gained in future

professional endeavours. The experience has reinforced my passion for software testing

and quality assurance and has provided clear direction for my career path forward in the

software engineering domain.

The development of automated testing procedures, validation frameworks, and quality

assurance methodologies has given me a comprehensive understanding of the critical role

that testing plays in ensuring the reliability and safety of engineering software. This expe-

rience will be invaluable as I pursue opportunities in software testing, quality assurance,

and engineering software development.

28

Chapter A

Appendix

A.1 Work Reports

29

Summer Fellowship 2025 Work Report

Name: Prince Sahu
Project: Osdag

Internship: Summer Internship 2025

DATE DAY TASK Hours
Worked

15-May-2025 Thursday Initial setup and familiarization with Osdag
development environment.

4

16-May-2025 Friday Reviewed project requirements and existing
documentation for FinPlate module.

4

19-May-2025 Monday Explored Osdag’s file structure and core
modules relevant to connections.

4

20-May-2025 Tuesday Began understanding unit testing principles
and pytest framework in Python.

4

21-May-2025 Wednesday Investigated existing test cases and identi-
fied areas for FinPlate validation.

4

22-May-2025 Thursday Implemented and successfully pushed a
dummy test case to GitHub.

4

23-May-2025 Friday Attended team meeting; discussed workflow
setup and testing procedures.

4

26-May-2025 Monday Prepared for FinPlate unit testing task as-
signment; reviewed initial guidelines.

4

27-May-2025 Tuesday Received specific FinPlate unit testing task;
began planning validation approach.

4

28-May-2025 Wednesday Analyzed FinPlate connection module archi-
tecture and data flow.

4

29-May-2025 Thursday Identified the need for standardized OSI files
and Excel sheet for validation.

4

30-May-2025 Friday Received test data (OSI files, Excel sheet);
started initial data parsing.

4

02-Jun-2025 Monday Attended Unit Testing Team Meeting; dis-
cussed progress and next steps.

4

03-Jun-2025 Tuesday Developed initial functions for extracting ex-
pected values from Excel sheet.

4

04-Jun-2025 Wednesday Attended Unit Testing Team Meeting; re-
fined data extraction logic.

4

05-Jun-2025 Thursday Continued implementing data processing for
OSI input files.

4

06-Jun-2025 Friday Researched how values are passed from OSI
files to set input function.

4

09-Jun-2025 Monday Reviewed Osdag documentation PDFs for
deeper understanding of calculations.

4

10-Jun-2025 Tuesday Attended Unit Testing+Installer Team
Meeting.

4

1

DATE DAY TASK Hours
Worked

11-Jun-2025 Wednesday Implemented core comparison logic for Fin-
Plate input and output validation.

4

12-Jun-2025 Thursday Continued developing parameterized tests
for multiple FinPlate scenarios.

4

13-Jun-2025 Friday Conducted initial tests on FinPlate module
and debugged discrepancies.

4

16-Jun-2025 Monday Refined test cases for various FinPlate con-
nection configurations.

4

17-Jun-2025 Tuesday Prepared progress updates for team lead;
addressed minor issues.

4

18-Jun-2025 Wednesday Attended team meeting; discussed progress
and technical challenges.

4

19-Jun-2025 Thursday Implemented tolerance-based comparison
for floating-point numerical values.

4

20-Jun-2025 Friday Attended team meeting; demonstrated cur-
rent testing progress.

4

23-Jun-2025 Monday Pushed FinPlate automation tests to per-
sonal GitHub branch.

4

24-Jun-2025 Tuesday Explored Python Mock library for potential
future unit testing enhancements.

4

25-Jun-2025 Wednesday Attended Unit Testing Team Meeting. 4
26-Jun-2025 Thursday Prepared a detailed document on OSI file

loading workflow in Osdag.
4

27-Jun-2025 Friday Shared OSI File Loading Workflow docu-
ment with the team.

4

30-Jun-2025 Monday Reviewed and refined existing FinPlate test
cases based on feedback.

4

01-Jul-2025 Tuesday Prepared for upcoming team meeting; en-
sured all code was up-to-date.

4

02-Jul-2025 Wednesday Attended Unit Testing Team Meeting; dis-
cussed rebasing to dev branch.

4

03-Jul-2025 Thursday Successfully rebased local branch to dev and
resolved merge conflicts.

4

04-Jul-2025 Friday Attended team meeting; provided updates
on rebase and testing status.

4

07-Jul-2025 Monday Pushed updated Osdag repository with Fin-
Plate tests to GitHub.

4

08-Jul-2025 Tuesday Addressed feedback on commit messages
and code structure for clarity.

4

09-Jul-2025 Wednesday Prepared for final update meeting; ensured
all tests passed.

4

10-Jul-2025 Thursday Attended final team meeting; committed
code highlighting Arrange, Act, Assert steps.

4

11-Jul-2025 Friday Finalized internship report content and doc-
umentation for submission.

4

2

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

32

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Approach and Implementation
	Task 1: Core calculation engine
	Task 2: Database and configuration
	Task 3: GUI (PyQt5)
	Task 4: Advanced features (planned and partial)
	Task 5: Code quality and documentation

	Outcomes
	Notes on code and standards

	OSI File Loading Workflow Development
	Task Overview: Problem Statement
	Current System Architecture Analysis
	OSI File Structure and Format
	Key System Components Identified

	Technical Implementation and Workflow
	File Loading Process
	Data Processing Pipeline

	Unit Testing Development
	Testing Framework Implementation
	Test Case Categories

	Technical Challenges and Solutions
	Dependency Management
	Data Validation

	Implementation Deliverables
	Code Documentation
	Testing Infrastructure

	Professional Development Outcomes
	Technical Skills Acquired
	Project Management Experience

	Expected Impact and Future Work
	Software Quality Improvement
	Knowledge Transfer

	Fin Plate Connection Validation and Testing
	Task Overview: Problem Statement
	Technical Implementation Framework
	Test Data Structure
	Testing Architecture

	Implementation Details
	Core Testing Functions
	Validation Categories

	Testing Methodology
	Arrange-Act-Assert Pattern
	Error Handling and Tolerance

	Validation Results and Findings
	Input Validation Success
	Output Validation Results

	Technical Challenges and Solutions
	Data Format Compatibility
	Precision and Tolerance
	Dependency Management

	Code Quality and Documentation
	Test Code Structure
	Maintainability Features

	Professional Development Outcomes
	Technical Skills Acquired
	Engineering Software Development

	Impact and Future Applications
	Software Quality Enhancement
	Knowledge Transfer
	Extensibility

	Conclusions
	Tasks Accomplished
	Task: Fin Plate Connection Validation and Testing Framework
	Technical Implementation Achievements

	Skills Developed
	Technical Skills
	Professional Skills
	Personal Development

	Impact and Contributions
	Future Recommendations
	Technical Achievements
	Conclusion

	Appendix
	Work Reports

	Bibliography

