
FOSSEE Summer Fellowship 2025
On

Development of Customizable Report Generation

and Implementation of Report Generation for Butt

Joint Bolted Module

Submitted by

Srinivas Raghav V C

3rd Year B.Tech Student, Indian Institute of Information Technology Kottayam

Kerala

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

August 12, 2025

Acknowledgments

I would like to express my sincere gratitude to everyone who supported and guided me

throughout the course of this project and my internship.

I am deeply thankful to the entire Osdag team, especially Parth Karia, Ajinkya Da-

hale, and Ajmal Babu M. S, for their invaluable technical guidance and encouragement

during my work on the project.

I wish to acknowledge Prof. Siddhartha Ghosh, Principal Investigator of Osdag and

Professor in the Department of Civil Engineering at IIT Bombay, for his vision and

leadership in the development of the Osdag project.

I am grateful to Prof. Kannan M. Moudgalya, Principal Investigator of FOSSEE and

Professor in the Department of Chemical Engineering at IIT Bombay, for providing the

opportunity to participate in the FOSSEE Fellowship and for his constant support.

My sincere thanks to FOSSEE Managers, Usha Viswanathan and Vineeta Parmar,

and their entire team for their administrative and organizational support throughout the

fellowship.

I gratefully acknowledge the support from the National Mission on Education through

Information and Communication Technology (ICT), Ministry of Education (MoE), Gov-

ernment of India, for facilitating this project and providing the necessary resources.

I would also like to thank my colleagues and fellow interns for their collaboration,

encouragement, and insightful discussions during the internship.

Finally, I extend my appreciation to my college, department, head, and principal for

their support and encouragement during my studies and this project.

1

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Context . 10

2.2 Problem Statement . 10

2.3 Work Completed . 10

2.4 Python Code . 11

2.4.1 Description of the Script . 11

2.4.2 Implementation . 11

2.4.3 Code Overview . 13

2.4.4 Testing and Results . 13

2.4.5 Limitations and Future Work . 13

3 Internship Project: Revamp Ideas for Osdag Interface 14

3.1 Context . 14

3.2 Problem Statement . 14

3.3 Design Implementation . 15

3.3.1 Design Philosophy . 15

3.4 Implementation Details . 16

3.4.1 Modular Component Architecture 16

3.4.2 Visual Design System . 16

3.4.3 User Interface Improvements . 17

3.4.4 Iterative Design Process . 17

2

3.4.5 Accessibility Enhancements . 18

3.4.6 Final Implementation . 19

3.5 Conclusion . 19

4 Internship Project: Enhancements for Butt Joint Bolted Connection

Reporting in Osdag 20

4.1 Context . 20

4.2 Problem Statement . 20

4.3 Implementation Overview . 21

4.4 Python Code . 21

4.4.1 Script Architecture . 21

4.4.2 Source Code . 22

4.4.3 Code Components . 34

4.4.4 Testing and Validation . 34

4.4.5 Current Limitations . 35

4.5 Documentation . 35

4.6 References . 35

5 Internship Project: Report Customization Dialog in Osdag 36

5.1 Context . 36

5.2 Problem Statement . 36

5.3 Implementation Overview . 36

5.4 Python Code . 37

5.4.1 Script Architecture . 37

5.4.2 Source Code . 38

5.4.3 Code Components . 58

5.4.4 Testing and Validation . 59

5.4.5 Current Limitations . 59

5.4.6 Usage . 60

5.4.7 System Integration . 60

5.4.8 Future Enhancements . 61

5.5 References . 61

6 Conclusions 62

3

6.1 Tasks Accomplished . 62

6.2 Skills Developed . 63

7 Internship Work Report 64

7.1 Overview . 64

7.2 Project Details . 64

7.3 Daily Work Log . 65

7.3.1 Week 1: May 15–21, 2025 . 65

7.3.2 Week 2: May 22–28, 2025 . 65

7.3.3 Week 3: May 29–June 4, 2025 . 66

7.3.4 Week 4: June 5–11, 2025 . 67

7.3.5 Week 5: June 12–18, 2025 . 67

7.3.6 Week 6: June 19–25, 2025 . 68

7.3.7 Week 7: June 26–30, 2025 . 68

Bibliography 70

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policyaccess,

equity, and qualityby:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Context

This project was undertaken as part of the FOSSEE Fellowship selection process, focusing

on the area of Unit Testing and Report Generation. The objective was to demonstrate

the ability to automate and customize LaTeX report generation workflows, a critical skill

for engineering and scientific software development.

2.2 Problem Statement

In the context of engineering and scientific reporting, it is often necessary to generate

customized reports from programmatically created LaTeX files. The challenge addressed

in this project was to enable users to select specific components or sections from a LaTeX

report (generated using PyLaTeX) and produce a tailored PDF output containing only the

desired content. This functionality is essential for improving report relevance, reducing

information overload, and supporting diverse stakeholder needs in automated reporting

workflows.

2.3 Work Completed

The following objectives were accomplished during the project:

1. Analysis of PyLaTeX Output: Examined the structure and content of LaTeX

files generated using PyLaTeX to identify logical report components (e.g., sections,

10

subsections, figures, tables).

2. Component Extraction Logic: Developed a parser to identify and extract La-

TeX components such as \section{}, \subsection{}, and environments (figures,

tables) from the source file.

3. User Interface for Selection: Designed a user interface (GUI) that allows users

to select which report components to include in the final output.

4. Custom Report Generation: Implemented logic to filter the LaTeX source based

on user selection and generate a new, customized .tex file.

5. PDF Compilation: Automated the compilation of the customized LaTeX file to

produce the final PDF report.

6. Unit Testing: Developed and executed unit tests to verify the correctness of

component extraction, filtering, and report generation.

7. Documentation: Documented the workflow, code, and usage instructions for fu-

ture users and developers.

2.4 Python Code

2.4.1 Description of the Script

The script below parses a LaTeX file, extracts sections and subsections, allows the user to

select which components to include, and generates a customized LaTeX file for PDF com-

pilation. The code is modular and designed for extensibility, supporting both command-

line and GUI-based workflows.

2.4.2 Implementation

Listing 2.1: Custom LaTeX Report Generator from PyLaTeX Output

1 import re

2

3 def extract_sections(latex_content):

4 """

11

5 Extracts sections and subsections from LaTeX content.

6 Returns a dict: {section: [subsections]}

7 """

8 sections = {}

9 current_section = None

10 for line in latex_content.split(’\n’):

11 section_match = re.search(r’\\ section \{([^}]+) \}’, line)

12 if section_match:

13 current_section = section_match.group (1)

14 sections[current_section] = []

15 subsection_match = re.search(r’\\ subsection \{([^}]+) \}’, line)

16 if subsection_match and current_section:

17 sections[current_section]. append(subsection_match.group (1))

18 return sections

19

20 def filter_latex(latex_content , selected_sections):

21 """

22 Filters LaTeX content to include only selected sections/subsections

.

23 """

24 lines = latex_content.split(’\n’)

25 filtered = []

26 current_section = None

27 include = False

28 for line in lines:

29 section_match = re.search(r’\\ section \{([^}]+) \}’, line)

30 if section_match:

31 current_section = section_match.group (1)

32 include = current_section in selected_sections

33 if include:

34 filtered.append(line)

35 return ’\n’.join(filtered)

36

37 # Example usage:

38 # latex_content = open(’input.tex ’).read()

39 # sections = extract_sections(latex_content)

40 # print(’Available sections:’, sections)

41 # selected = [’Introduction ’, ’Results ’]

42 # filtered = filter_latex(latex_content , selected)

12

43 # with open(’custom_report.tex ’, ’w ’) as f:

44 # f.write(filtered)

2.4.3 Code Overview

• extract sections: Parses the LaTeX file to build a dictionary of sections and their

subsections.

• filter latex: Filters the LaTeX content to include only the user-selected sections.

• Example usage: Shows how to use the functions to generate a custom report.

2.4.4 Testing and Results

Unit tests were written to verify the correctness of section extraction and filtering. For

example, given a LaTeX file with three sections, the script correctly identifies all sections

and allows the user to generate a report containing only the selected ones. The output

was validated by compiling the filtered LaTeX file to PDF and visually inspecting the

result.

2.4.5 Limitations and Future Work

• The current implementation supports only section and subsection extraction. Fu-

ture work could extend this to include figures, tables, and custom environments.

• The user interface is basic; a more advanced GUI could improve usability and

support batch operations.

• Integration with continuous integration (CI) pipelines for automated report testing

and generation is a potential area for enhancement.

13

Chapter 3

Internship Project: Revamp Ideas for

Osdag Interface

3.1 Context

This project focused on reimagining the user interface and experience of the Osdag ap-

plication. The primary objective was to modernize the application’s design while main-

taining its core functionality and improving user accessibility. The redesign encompassed

visual identity, modular architecture, interface design principles, and user experience op-

timization.

3.2 Problem Statement

The existing Osdag interface required modernization to meet current user experience

standards. Key challenges included:

• Outdated visual design that lacked modern appeal

• Inconsistent user interface elements

• Limited accessibility features

• Poor visual hierarchy and navigation

• Lack of cohesive design language

14

3.3 Design Implementation

3.3.1 Design Philosophy

The redesign was guided by four core principles:

1. Modularity and Scalability

The main idea behind the application was to emphasize modularity, as it greatly en-

hances maintainability and scalability. By structuring the components in a modular

fashion, future updates and feature expansions become significantly more manageable.

This architectural approach ensures that:

• Components can be easily modified without affecting others

• New features can be added seamlessly

• Code maintenance becomes more efficient

• Testing and debugging processes are simplified

2. Visual Identity and User Experience

The application consistently follows a green-themed design, providing a unique and rec-

ognizable visual identity. This cohesive color scheme reinforces our brand and ensures a

seamless user experience across different sections. The green theme was chosen for its:

• Professional appearance suitable for engineering software

• Calming effect that reduces eye strain during long usage

• Association with growth and progress

• High contrast ratios for accessibility

3. Interface Design and Usability

Most buttons feature rounded edges for a modern, friendly appearance. Additionally, the

logos have been refined to be more visually clear and accessible. Overall, the interface

15

has been designed to feel intuitive and user-friendly, ensuring a smoother interaction

experience. Key improvements include:

• Rounded button designs for modern aesthetics

• Refined logo designs for better clarity

• Intuitive navigation patterns

• Consistent spacing and typography

• Clear visual hierarchy

4. Dark Mode Implementation

A dark mode palette was implemented as an initial concept, though it requires further

refinement. The current implementation provides basic dark mode functionality but needs

more creative development for optimal user experience.

3.4 Implementation Details

3.4.1 Modular Component Architecture

The redesign implemented a component-based architecture using PyQt5, where each UI

element is treated as a reusable component. This approach provides:

• Consistent behavior across similar elements

• Easy maintenance and updates

• Scalable design system

• Reduced code duplication

3.4.2 Visual Design System

A comprehensive design system was developed including:

• Color palette with primary green theme

16

• Typography hierarchy for different content types

• Spacing system for consistent layouts

• Icon set for common actions

• Button and input field styles

3.4.3 User Interface Improvements

Figure 3.1: Navigation and Menu System - Improved User Flow

3.4.4 Iterative Design Process

The redesign process involved multiple iterations and user feedback cycles:

17

Figure 3.2: Design Iteration Process - User Feedback Integration

3.4.5 Accessibility Enhancements

Special attention was paid to accessibility features:

• High contrast color combinations

• Keyboard navigation support

• Screen reader compatibility

• Scalable text sizes

• Clear focus indicators

18

3.4.6 Final Implementation

The completed redesign showcases the modern, professional interface:

3.5 Conclusion

The UI/UX redesign project successfully modernized the Osdag application while main-

taining its core functionality. The implementation of modular architecture, consistent

visual design, and improved user experience has positioned the application for future

growth and development. The project demonstrated the importance of user-centered

design and the value of iterative development processes.

19

Chapter 4

Internship Project: Enhancements for

Butt Joint Bolted Connection Report-

ing in Osdag

4.1 Context

This work was carried out as part of the Osdag project to improve the transparency,

clarity, and code compliance of bolted connection design reports, specifically for butt

joint bolted connections. The enhancements were motivated by the need for explicit,

step-by-step documentation of IS 800:2007 reduction factors and robust, user-friendly

reporting workflows for both developers and end users.

4.2 Problem Statement

The design and verification of bolted connections in steel structures, such as butt joints,

require strict adherence to IS 800:2007. The existing Osdag implementation lacked ex-

plicit, step-by-step reporting for long joint and large grip reduction factors, as well as

a robust, user-friendly save design function for the Butt Joint Bolted module. This

project aimed to implement these missing features, ensuring clarity, transparency, and

code compliance in the generated design reports.

20

4.3 Implementation Overview

1. Added Functions for Reduction Factors: Implemented long joint reduction factor

and large grip reduction factor to compute and document the relevant IS 800:2007

reduction factors, with LaTeX output for reporting.

2. Enhanced save design Logic: Developed a comprehensive save design method

for the Butt Joint Bolted module, mirroring the reporting style of the tension bolted

module and including all relevant checks, calculations, and reporting steps.

3. Integration and Error Handling: Ensured robust error handling and minimal

error reporting in case of failures, and integrated the new logic with the Osdag

reporting workflow.

4. Testing and Validation: Verified the correctness of the new functions and report-

ing logic with various design scenarios, including edge cases and error conditions.

5. Documentation: Provided clear code comments, user/developer documentation,

and sample outputs for future reference.

4.4 Python Code

4.4.1 Script Architecture

The script introduces two new functions for IS 800:2007 reduction factors and a compre-

hensive save design method for the Butt Joint Bolted connection. The workflow is as

follows:

• Reduction Factor Functions: Compute and format the long joint and large grip

reduction factors as per IS 800:2007, outputting LaTeX for inclusion in reports.

• save design Method: Gathers all input parameters, performs design checks (spac-

ing, bolt design, reduction factors, verification), and generates a detailed LaTeX

report using the Osdag reporting engine.

• Error Handling: If any error occurs, a minimal error report is generated and

logged.

21

4.4.2 Source Code

def save_design(self , popup_summary):

"""

Generate design report for Bolted Butt Joint Connection

as per IS 800:2007

Follows tension bolted module reporting style with

explicit , step -by -step calculations

"""

try:

Build report_input dictionary - Input Parameters

Section (like tension bolted)

self.report_input = {

KEY_MODULE: getattr(self , ’module ’, ’Butt Joint

Bolted ’),

KEY_MAIN_MODULE: getattr(self , ’mainmodule ’, ’

Butt Joint Bolted Connection ’),

Applied Load - Input

KEY_DISP_TENSILE_FORCE: float(getattr(self , ’

tensile_force ’, 0)),

Connection Details - Input

"Connection Details": "TITLE",

KEY_DISP_MATERIAL: getattr(self , ’main_material ’,

’N/A’),

KEY_DISP_PLATE1_THICKNESS: float(getattr(self , ’

plate1thk ’, 0)),

KEY_DISP_PLATE2_THICKNESS: float(getattr(self , ’

plate2thk ’, 0)),

KEY_DISP_PLATE_WIDTH: float(getattr(self , ’width’

, 0)),

22

KEY_DISP_COVER_PLATE: getattr(self , ’cover_plate ’

, ’Both Sides ’),

Material Properties

"Material Properties": "TITLE",

KEY_DISP_ULTIMATE_STRENGTH_REPORT: round(getattr(

self.plate1 , ’fu’, 0), 1) if hasattr(self , ’

plate1 ’) else 0,

KEY_DISP_YIELD_STRENGTH_REPORT: round(getattr(

self.plate1 , ’fy’, 0), 1) if hasattr(self , ’

plate1 ’) else 0,

Bolt Details - Input and Design Preference (

show full lists like tension bolted)

"Bolt Details - Input and Design Preference": "

TITLE",

KEY_DISP_D: str([int(d) for d in getattr(self.

bolt , ’bolt_diameter ’, [])]) if hasattr(self ,

’bolt’) else "[]",

KEY_DISP_GRD: str([float(d) for d in getattr(self

.bolt , ’bolt_grade ’, [])]) if hasattr(self , ’

bolt’) else "[]",

KEY_DISP_TYP: getattr(self.bolt , ’bolt_type ’, ’N/

A’) if hasattr(self , ’bolt’) else ’N/A’,

KEY_DISP_DP_BOLT_HOLE_TYPE: getattr(self.bolt , ’

bolt_hole_type ’, ’Standard ’) if hasattr(self ,

’bolt’) else ’Standard ’,

Detailing - Design Preference

"Detailing - Design Preference": "TITLE",

KEY_DISP_DP_DETAILING_EDGE_TYPE: getattr(self.

bolt , ’edge_type ’, ’Sheared or hand flame cut’

) if hasattr(self , ’bolt’) else ’Sheared or

hand flame cut’,

23

KEY_DISP_DP_DETAILING_CORROSIVE_INFLUENCES_BEAM:

getattr(self.bolt , ’corrosive_influences ’, ’

Corrosive ’) if hasattr(self , ’bolt’) else ’

Corrosive ’,

}

Add bolt -type specific inputs (only if friction

grip)

if hasattr(self , ’bolt’) and getattr(self.bolt , ’

bolt_type ’, ’’) == TYP_FRICTION_GRIP:

self.report_input[

KEY_DISP_DP_BOLT_SLIP_FACTOR_REPORT] = getattr

(self.bolt , ’mu_f’, 0.3) if hasattr(self.bolt ,

’mu_f’) else 0.3

Build report_check list - Design Verification (like

tension bolted structure)

self.report_check = []

if getattr(self , ’design_status ’, False):

Extract values for calculations

bolt_diameter_provided = float(getattr(self.bolt ,

’bolt_diameter_provided ’, 0)) if hasattr(self

, ’bolt’) else 0.0

bolt_grade = getattr(self.bolt , ’

bolt_grade_provided ’, 0) if hasattr(self , ’

bolt’) else 0

bolt_fu = getattr(self.bolt , ’bolt_fu ’, 0) if

hasattr(self , ’bolt’) else 0

bolt_fy = getattr(self.bolt , ’bolt_fy ’, 0) if

hasattr(self , ’bolt’) else 0

bolt_net_area = getattr(self.bolt , ’bolt_net_area

’, 0) if hasattr(self , ’bolt’) else 0

24

connecting_plates = [getattr(self , ’plate1thk ’,

0), getattr(self , ’plate2thk ’, 0)]

Spacing values

final_pitch = float(getattr(self , ’final_pitch ’,

0))

final_gauge = float(getattr(self , ’final_gauge ’,

0))

final_edge_dist = float(getattr(self , ’

final_edge_dist ’, 0))

final_end_dist = float(getattr(self , ’

final_end_dist ’, 0))

Bolt layout

rows = getattr(self , ’rows’, 1)

cols = getattr(self , ’cols’, 1)

number_bolts = int(getattr(self , ’number_bolts ’,

0))

tensile_force = float(getattr(self , ’

tensile_force ’, 0))

SECTION 1: Spacing Check (like tension bolted)

t7 = (’SubSection ’, ’Spacing Check as per Cl.

10.2 of IS 800:2007 ’, ’|p{2.5cm}|p{7.5cm}|p{3

cm}|p{2.5cm}|’)

self.report_check.append(t7)

t8 = (DISP_MIN_PITCH , cl_10_2_2_min_spacing(

bolt_diameter_provided),

display_prov(final_pitch , "p", "mm"),

get_pass_fail (2.5 * bolt_diameter_provided ,

final_pitch , relation=’leq’))

self.report_check.append(t8)

25

t9 = (DISP_MAX_PITCH , cl_10_2_3_1_max_spacing(

connecting_plates),

display_prov(final_pitch , "p", "mm"),

get_pass_fail(final_pitch , 32 * min(

connecting_plates), relation=’leq’))

self.report_check.append(t9)

if final_gauge > 0: # Only show for multi -row

arrangements

t10 = (DISP_MIN_GAUGE , cl_10_2_2_min_spacing(

bolt_diameter_provided),

display_prov(final_gauge , "g", "mm"),

get_pass_fail (2.5 *

bolt_diameter_provided , final_gauge

, relation="leq"))

self.report_check.append(t10)

t11 = (DISP_MAX_GAUGE ,

cl_10_2_3_1_max_spacing(connecting_plates)

,

display_prov(final_gauge , "g", "mm"),

get_pass_fail(final_gauge , 32 * min(

connecting_plates), relation="leq")

)

self.report_check.append(t11)

edge_type_str = getattr(self.bolt , ’edge_type ’, ’

Sheared or hand flame cut’) if hasattr(self , ’

bolt’) else ’Sheared or hand flame cut’

t12 = (DISP_MIN_END ,

cl_10_2_4_2_min_edge_end_dist(

bolt_diameter_provided , edge_type_str),

26

display_prov(final_end_dist , "e_{end}", "

mm"),

get_pass_fail (1.2 * bolt_diameter_provided

, final_end_dist , relation=’leq’))

self.report_check.append(t12)

t13 = (DISP_MIN_EDGE ,

cl_10_2_4_2_min_edge_end_dist(

bolt_diameter_provided , edge_type_str),

display_prov(final_edge_dist , "e", "mm"),

get_pass_fail (1.2 * bolt_diameter_provided

, final_edge_dist , relation=’leq’))

self.report_check.append(t13)

SECTION 3: Bolt Design (like tension bolted)

t14 = (’SubSection ’, ’Bolt Design as per Cl. 10.3

of IS 800:2007 ’, ’|p{2.5cm}|p{5.5cm}|p{6.5cm

}|p{1cm}|’)

self.report_check.append(t14)

Bolt capacity calculations

bolt_type = getattr(self.bolt , ’bolt_type ’, ’’)

if hasattr(self , ’bolt’) else ’’

planes = getattr(self , ’planes ’, 1)

bolt_shear_capacity = getattr(self.bolt , ’

bolt_shear_capacity ’, 0) if hasattr(self , ’

bolt’) else 0

bolt_bearing_capacity = getattr(self.bolt , ’

bolt_bearing_capacity ’, 0) if hasattr(self , ’

bolt’) else 0

bolt_capacity = getattr(self.bolt , ’bolt_capacity

’, 0) if hasattr(self , ’bolt’) else 0

Convert to kN for display

27

bolt_shear_capacity_kn = round(

bolt_shear_capacity / 1000, 2) if

bolt_shear_capacity > 1000 else

bolt_shear_capacity

bolt_bearing_capacity_kn = round(

bolt_bearing_capacity / 1000, 2) if

bolt_bearing_capacity > 1000 else

bolt_bearing_capacity

bolt_capacity_kn = round(bolt_capacity / 1000, 2)

if bolt_capacity > 1000 else bolt_capacity

if bolt_type == TYP_BEARING:

t15 = (KEY_OUT_DISP_BOLT_SHEAR , ’’,

cl_10_3_3_bolt_shear_capacity(bolt_fu ,

planes , bolt_net_area , 1.25,

bolt_shear_capacity_kn), ’’)

self.report_check.append(t15)

kb = getattr(self.bolt , ’kb’, 0) if hasattr(

self , ’bolt’) else 0

bolt_conn_plates_t_fu_fy = getattr(self , ’

bolt_conn_plates_t_fu_fy ’, []) if hasattr(

self , ’bolt_conn_plates_t_fu_fy ’) else []

t16 = (KEY_OUT_DISP_BOLT_BEARING , ’’,

cl_10_3_4_bolt_bearing_capacity(kb ,

bolt_diameter_provided ,

bolt_conn_plates_t_fu_fy , 1.25,

bolt_bearing_capacity_kn), ’’)

self.report_check.append(t16)

t17 = (KEY_OUT_DISP_BOLT_CAPACITY , ’’,

cl_10_3_2_bolt_capacity(

bolt_shear_capacity_kn ,

28

bolt_bearing_capacity_kn ,

bolt_capacity_kn), ’’)

self.report_check.append(t17)

else:

HSFG bolt

mu_f = float(getattr(self.bolt , ’mu_f’, 0.3))

if hasattr(self , ’bolt’) else 0.3

slip_res = getattr(self , ’slip_res ’, 0)

slip_res_kn = round(slip_res / 1000, 2) if

slip_res > 1000 else slip_res

bolt_capacity_kn = slip_res_kn

t15 = (KEY_OUT_DISP_BOLT_SLIP_DR , ’’,

cl_10_4_3_HSFG_bolt_capacity(mu_f ,

planes , 1.0, bolt_fu , bolt_net_area

, 1.25, slip_res_kn), ’’)

self.report_check.append(t15)

Number of bolts required

t18 = (DISP_NUM_OF_BOLTS , ’’, display_prov(

number_bolts , "n"), ’’)

self.report_check.append(t18)

Note: class variables are self.cols (transverse

) and self.rows (longitudinal)

t19 = (DISP_NUM_OF_COLUMNS , ’’, display_prov(self

.cols , "n_{c}"), ’’)

self.report_check.append(t19)

t20 = (DISP_NUM_OF_ROWS , ’’, display_prov(self.

rows , "n_{r}"), ’’)

self.report_check.append(t20)

29

Long joint and large grip checks (only if

conditions are met)

Long joint check - must match exact calculation

logic from design method

if self.number_bolts > 2 and self.rows > 1:

Use exact same calculation as in

check_capacity_reduction_1

Note: self.rows is longitudinal direction ,

cols is transverse

lj = (self.rows - 1) * self.bolt.

min_pitch_round

if lj > 15 * bolt_diameter_provided:

bij = self.bij # Use class variable

directly

Only show if reduction was actually

calculated and applied

bij will be 0 if no reduction , or

0.75 -1.0 if reduction applied

if bij >= 0.75 and bij <= 1.0:

t21 = (KEY_OUT_LONG_JOINT , ’’,

cl_10_3_3_1_long_joint_reduction_factor

(lj, bolt_diameter_provided

, bij),

get_pass_fail(bij , 0.75,

relation=’geq’))

self.report_check.append(t21)

Large grip check - must match exact calculation

logic from design method

lg = self.plate1thk + self.plate2thk

if lg > 5 * bolt_diameter_provided:

blg = self.blg # Use class variable directly

Only show if reduction was actually

calculated and applied

30

blg will be 0 if no reduction , or

calculated value if reduction applied

if blg > 0 and blg <= 1.0:

Large grip reduction should pass if it’

s calculated and applied

t22 = (KEY_OUT_LARGE_GRIP , ’’,

cl_10_3_3_2_large_grip_reduction_factor

(lg , bolt_diameter_provided ,

blg),

get_pass_fail(blg , 0.0, relation=’

gt’)) # Pass if blg > 0

self.report_check.append(t22)

SECTION 4: Connection Verification (like

tension bolted)

t23 = (’SubSection ’, ’Connection Verification ’, ’

|p{2.5cm}|p{5.5cm}|p{6.5cm}|p{1cm}|’)

self.report_check.append(t23)

Use utilization ratio from class variable

utilization_ratio = getattr(self , ’

utilization_ratio ’, 0)

Show utilization ratio without formula

t24 = (KEY_DISP_UTILIZATION_RATIO , ’Utilization

ratio should be 1.0’,

display_prov(utilization_ratio , "U.R."),

get_pass_fail(utilization_ratio , 1.0,

relation=’leq’))

self.report_check.append(t24)

else:

Design not completed

31

t1 = (’SubSection ’, ’Design Status ’, ’|p{2.5cm}|p

{7.5cm}|p{3cm}|p{2.5cm}|’)

self.report_check.append(t1)

t2 = (’Design Status ’,

’Design not completed successfully. Check

input parameters and design constraints.

’,

’Review inputs and try again’,

’FAIL’)

self.report_check.append(t2)

Generate LaTeX report

Disp_2d_image = []

Disp_3D_image = "/ResourceFiles/images /3d.png"

import sys

import os

rel_path = str(sys.path [0])

rel_path = os.path.abspath(".")

rel_path = rel_path.replace("\\", "/")

fname_no_ext = popup_summary[’filename ’]

CreateLatex.save_latex(CreateLatex (), self.

report_input , self.report_check , popup_summary ,

fname_no_ext ,

rel_path , Disp_2d_image ,

Disp_3D_image , module=self.

module)

except Exception as e:

Create minimal error report if save_design fails

logger.error(f"Error in save_design: {str(e)}")

self.report_input = {

32

KEY_MODULE: "Butt Joint Bolted",

KEY_MAIN_MODULE: "Butt Joint Bolted Connection",

"Error Report": "TITLE",

"Error Details": f"Report generation failed: {str

(e)}"

}

self.report_check = [

(’SubSection ’, ’Error Report ’, ’|p{2.5cm}|p{7.5cm

}|p{3cm}|p{2.5cm}|’),

(’Error ’, f’Report generation failed: {str(e)}’,

’Check design status and inputs ’, ’FAIL’)

]

Generate minimal error report

try:

Disp_2d_image = []

Disp_3D_image = "/ResourceFiles/images /3d.png"

import sys

import os

rel_path = str(sys.path [0])

rel_path = os.path.abspath(".")

rel_path = rel_path.replace("\\", "/")

fname_no_ext = popup_summary.get(’filename ’, ’

error_report ’)

CreateLatex.save_latex(CreateLatex (), self.

report_input , self.report_check , popup_summary

, fname_no_ext ,

rel_path , Disp_2d_image ,

Disp_3D_image , module=

self.module)

except Exception as e2:

33

logger.error(f"Critical error in save_design: {

str(e2)}")

raise

4.4.3 Code Components

• cl 10 3 3 1 long joint reduction factor: Calculates the long joint reduction

factor βlj, checks if the joint length exceeds 15d, and formats the calculation as

a LaTeX equation for the report.

• cl 10 3 3 2 large grip reduction factor: Calculates the large grip reduction

factor βlg, checks if the grip length exceeds 5d, and formats the calculation as a

LaTeX equation for the report.

• save design:

– Collects all relevant input parameters and material properties.

– Performs all required design checks (spacing, gauge, edge/end distances, bolt

design, reduction factors, verification).

– Appends each check and calculation to the report in a structured format.

– Handles both successful and failed design cases, generating a detailed or min-

imal error report as appropriate.

– Calls the Osdag LaTeX report generator to produce the final report.

4.4.4 Testing and Validation

The new functions and reporting logic were tested with a variety of design scenarios,

including:

• Standard butt joint configurations with and without long joint/large grip condi-

tions.

• Edge cases where joint length or grip length is exactly at the threshold.

• Error conditions (e.g., missing input parameters, invalid values) to verify robust

error handling.

34

Sample outputs were visually inspected and compared with manual calculations and IS

800:2007 requirements to ensure correctness.

4.4.5 Current Limitations

• The current implementation focuses on butt joint bolted connections; future work

could generalize the approach to other connection types.

• Automated validation against a wider range of test cases and integration with CI

pipelines is recommended.

• User interface improvements for report customization and visualization could fur-

ther enhance usability.

4.5 Documentation

Usage: The new functions and reporting logic are automatically invoked when generating

a design report for a Butt Joint Bolted connection in Osdag. The report now includes

explicit checks and LaTeX-formatted calculations for long joint and large grip reduction

factors, as well as improved error handling and reporting.

Integration: These enhancements are fully integrated into the Osdag reporting work-

flow, ensuring that all relevant IS 800:2007 checks are documented and traceable in the

generated reports.

4.6 References

• IS 800:2007, ”General Construction in Steel Code of Practice”.

• Osdag documentation: https://osdag.github.io/

• Python official documentation: https://docs.python.org/3/

35

https://osdag.github.io/
https://docs.python.org/3/

Chapter 5

Internship Project: Report Customiza-

tion Dialog in Osdag

5.1 Context

This work was conducted as part of the Osdag project to address the need for flexible,

user-driven report generation in engineering design software. The goal was to empower

users to customize the content and structure of their design reports, improving usability

and relevance for diverse stakeholders.

5.2 Problem Statement

In engineering design software such as Osdag, users require the ability to generate reports

tailored to their specific needs. The default reporting mechanism did not provide options

for users to select or customize which sections, figures, or data to include in the final

report. This limitation reduced the flexibility and utility of the reports for different

stakeholders, such as engineers, clients, and regulatory authorities. The challenge was

to design and implement a user-friendly mechanism for report customization within the

Osdag graphical user interface (GUI).

5.3 Implementation Overview

To solve the above problem, the following steps were undertaken:

36

1. Requirement Analysis: Gathered user requirements for customizable report con-

tent and structure.

2. GUI Design: Designed a report customization dialog using PyQt, enabling users

to select which sections (e.g., Introduction, Calculations, Results, Figures, Tables,

Code) to include in their reports.

3. Development: Created the dialog in ui_report_customization_popup.py and

integrated it with the summary popup in ui_summary_popup.py.

4. Integration: Ensured that user selections in the customization dialog are reflected

in the generated report.

5. Testing: Conducted functional testing to validate that the customized reports are

generated correctly according to user preferences.

6. Documentation: Documented the feature for both users and developers.

5.4 Python Code

This section presents the Python code developed for the report customization dialog in

Osdag. The code provides a user-friendly interface for selecting which sections to include

in the final PDF report, parses the LaTeX file, and compiles the customized report.

5.4.1 Script Architecture

The script is structured as follows:

• Qt Environment Setup: Ensures the correct configuration of the Qt environment

for cross-platform compatibility.

• LaTeX Parsing: Extracts sections and subsections from the LaTeX report file.

• Section Selection UI: Displays a tree view with checkboxes for users to select

report sections and subsections.

• LaTeX Filtering: Filters the LaTeX content based on user selection, preserving

document structure.

37

• PDF Compilation: Compiles the filtered LaTeX into a PDF and allows the user

to save the customized report.

• Integration: The dialog is integrated with the summary popup, so users can launch

customization after entering report metadata.

5.4.2 Source Code

"""

OSDAG Report Customization Dialog

PURPOSE:

This module provides a user -friendly interface for customizing

engineering design reports.

Users can select which sections to include in their final PDF

report.

WORKFLOW:

1. Parse existing LaTeX report file

2. Display sections/subsections in a tree view with checkboxes

3. Allow users to select which content to include

4. Filter LaTeX content based on selection

5. Compile customized PDF

6. Allow saving the final customized report

MAIN FEATURES:

- Tree -based section selection (no PDF preview for performance)

- Manual compile control (auto -compile disabled by default)

- Temporary file handling for clean workspace

- External PDF viewer integration

- Smart LaTeX filtering that preserves document structure

AUTHOR: Srinivas Raghav V C

"""

38

import os

import re

import tempfile

import subprocess

import shutil

import sys

Qt ENVIRONMENT SETUP - Fix platform plugin issues on different

systems

def setup_qt_environment ():

"""

Configure Qt environment to prevent platform plugin errors.

This is especially important in conda environments where Qt

plugins

may not be in the expected location.

"""

try:

import PyQt5

pyqt5_path = os.path.dirname(PyQt5.__file__)

Common Qt plugin locations to search

plugin_paths = [

os.path.join(pyqt5_path , ’Qt5’, ’plugins ’),

os.path.join(pyqt5_path , ’Qt’, ’plugins ’),

os.path.join(pyqt5_path , ’plugins ’),

os.path.join(pyqt5_path , ’..’, ’qt5’, ’plugins ’),

]

Find and set the first valid plugin path

for plugin_path in plugin_paths:

39

if os.path.exists(plugin_path):

os.environ[’QT_PLUGIN_PATH ’] = plugin_path

if not os.environ.get(’

QT_QPA_PLATFORM_PLUGIN_PATH ’):

print(f"INFO: Set QT_PLUGIN_PATH to {

plugin_path}")

break

except Exception as e:

print(f"WARNING: Could not setup Qt environment: {e}")

Configure Qt before importing widgets

setup_qt_environment ()

IMPORTS - PyQt5 widgets and core functionality

from PyQt5.QtWidgets import (QDialog , QVBoxLayout , QHBoxLayout ,

QTreeWidget , QTreeWidgetItem ,

QPushButton , QLabel ,

QCheckBox , QFileDialog , QMessageBox)

from PyQt5.QtCore import Qt , pyqtSignal

OSDAG IMPORTS - Try to import LaTeX generator

try:

from .. design_report.reportGenerator_latex import CreateLatex

CREATELATEX_AVAILABLE = True

print("INFO: CreateLatex successfully imported")

except ImportError:

CreateLatex = None

CREATELATEX_AVAILABLE = False

40

print("WARNING: CreateLatex not available")

CREATELATEX_AVAILABLE = False

CLASS: LaTeXParser - Extracts sections from LaTeX documents

class LaTeXParser:

"""

Parses LaTeX files to extract document structure.

This class finds all \section {} and \subsection {} commands in

a LaTeX

document and organizes them into a hierarchical structure.

Returns:

dict: {section_name: [list_of_subsections]}

"""

def parse_sections(self , latex_content):

"""

Extract sections and subsections from LaTeX content.

Args:

latex_content (str): Raw LaTeX document content

Returns:

dict: Hierarchical structure of sections and

subsections

"""

sections = {}

current_section = None

41

Process each line to find LaTeX section commands

for line in latex_content.split(’\n’):

Look for \section{Section Name} patterns

section_match = re.search(r’\\ section \{([^}]+) \}’,

line)

if section_match:

current_section = section_match.group (1).strip ()

sections[current_section] = [] # Initialize

subsection list

Look for \subsection{Subsection Name} patterns

subsection_match = re.search(r’\\ subsection \{([^}]+)

\}’, line)

if subsection_match and current_section:

subsection = subsection_match.group (1).strip ()

sections[current_section]. append(subsection)

return sections

CLASS: SectionTreeWidget - Interactive tree for selecting

report sections

class SectionTreeWidget(QTreeWidget):

"""

Custom tree widget for selecting report sections and

subsections.

Features:

- Hierarchical display of sections and subsections

- Checkbox selection with parent -child relationships

42

- Automatic state updates (checking parent checks all

children)

- Signal emission for real -time updates

"""

Custom signal emitted when selection changes

selectionChanged = pyqtSignal ()

def __init__(self):

""" Initialize the tree widget with proper configuration.

"""

super ().__init__ ()

self.setHeaderLabel("Report Sections")

Connect item changes to our handler

self.itemChanged.connect(self.on_item_changed)

def build_from_sections(self , sections):

"""

Populate tree widget from parsed LaTeX sections.

Args:

sections (dict): {section_name: [subsection_list]}

"""

self.clear()

Validate input format

if not isinstance(sections , dict):

print(f"ERROR: Expected dict , got {type(sections)}: {

sections}")

return

Create tree items for each section

for section_name , subsections in sections.items():

Create main section item with checkbox

43

section_item = QTreeWidgetItem(self , [section_name])

section_item.setFlags(section_item.flags() | Qt.

ItemIsUserCheckable)

section_item.setCheckState (0, Qt.Checked) # Default:

all selected

Add subsection items under the section

if isinstance(subsections , (list , tuple)):

for subsection in subsections:

sub_item = QTreeWidgetItem(section_item , [str

(subsection)])

sub_item.setFlags(sub_item.flags () | Qt.

ItemIsUserCheckable)

sub_item.setCheckState (0, Qt.Checked) #

Default: all selected

else:

print(f"WARNING: Subsections not iterable for {

section_name }: {type(subsections)}")

Expand all items to show the full tree structure

self.expandAll ()

def on_item_changed(self , item , column):

""" Handle checkbox changes """

if column == 0:

Temporarily block signals to prevent recursion

self.blockSignals(True)

state = item.checkState (0)

Update children

for i in range(item.childCount ()):

item.child(i).setCheckState (0, state)

Update parent state based on children

44

self.update_parent_state(item)

Re-enable signals and emit

self.blockSignals(False)

self.selectionChanged.emit()

def update_parent_state(self , item):

""" Update parent checkbox state based on children """

parent = item.parent ()

if parent is None:

return

total_children = parent.childCount ()

checked_children = sum(1 for i in range(total_children)

if parent.child(i).checkState (0) ==

Qt.Checked)

if checked_children == total_children:

parent.setCheckState (0, Qt.Checked)

elif checked_children == 0:

parent.setCheckState (0, Qt.Unchecked)

else:

parent.setCheckState (0, Qt.PartiallyChecked)

def get_selected_sections(self):

""" Return list of selected sections """

selected = []

for i in range(self.topLevelItemCount ()):

section_item = self.topLevelItem(i)

section_name = section_item.text (0)

if section_item.checkState (0) == Qt.Checked:

Entire section selected

45

selected.append(section_name)

else:

Check individual subsections

for j in range(section_item.childCount ()):

sub_item = section_item.child(j)

if sub_item.checkState (0) == Qt.Checked:

selected.append(f"{section_name }/{

sub_item.text (0)}")

return selected

class LaTeXFilter:

""" Filter LaTeX content based on selection - 100 lines max"""

def filter_content(self , latex_content , selected_sections):

""" Remove unselected sections from LaTeX """

lines = latex_content.split(’\n’)

filtered_lines = []

current_section = None

current_subsection = None

include_content = True # Start with True for document

preamble

section_started = False

for line in lines:

Check for new section

section_match = re.search(r’\\ section \{([^}]+) \}’,

line)

if section_match:

current_section = section_match.group (1).strip ()

current_subsection = None

section_started = True

46

Include section if it’s selected OR if any of

its subsections are selected

include_content = (current_section in

selected_sections or

any(sel.startswith(f"{

current_section }/") for sel

in selected_sections))

Check for subsection

subsection_match = re.search(r’\\ subsection \{([^}]+)

\}’, line)

if subsection_match and current_section:

current_subsection = subsection_match.group (1).

strip ()

subsection_key = f"{current_section }/{

current_subsection}"

Include subsection only if specifically

selected OR parent section is fully selected

include_content = (current_section in

selected_sections or

subsection_key in

selected_sections)

Always include document structure and preamble

if (include_content or

not section_started or # Include everything

before first section

line.startswith(’\\ documentclass ’) or

line.startswith(’\\ usepackage ’) or

line.startswith(’\\ title’) or

line.startswith(’\\ author ’) or

line.startswith(’\\date’) or

line.startswith(’\\ begin{document}’) or

line.startswith(’\\ maketitle ’) or

47

line.startswith(’\\end{document}’)):

filtered_lines.append(line)

return ’\n’.join(filtered_lines)

class ReportCustomizationDialog(QDialog):

""" Main dialog - 200 lines max"""

def __init__(self , main_obj , parent=None , existing_tex_file=

None):

super ().__init__(parent)

self.main_obj = main_obj

self.existing_tex_file = existing_tex_file

self.latex_content = None

self.temp_dir = None

Set title based on available functionality

if CreateLatex is None:

self.setWindowTitle("Customize Report (Limited Mode)"

)

else:

self.setWindowTitle("Customize Report")

self.setModal(True)

self.resize (1000, 700) # Initialize components

self.parser = LaTeXParser ()

self.filter = LaTeXFilter ()

self.latest_pdf = None

self.init_ui ()

self.load_existing_or_generate_report ()

def init_ui(self):

""" Create simple UI layout """

48

layout = QVBoxLayout(self)

Title

title = QLabel("Customize Report Sections")

title.setStyleSheet("font -size: 16px; font -weight: bold;

margin: 10px;")

layout.addWidget(title)

Main content - only section tree (no PDF preview)

self.section_tree = SectionTreeWidget ()

self.section_tree.selectionChanged.connect(self.

on_selection_changed)

layout.addWidget(self.section_tree)

Controls

controls = QHBoxLayout ()

Auto compile checkbox - disabled by default for speed

self.auto_compile = QCheckBox("Auto Compile")

self.auto_compile.setChecked(False) # Disabled by

default

controls.addWidget(self.auto_compile)

Manual compile button

compile_btn = QPushButton("Compile PDF")

compile_btn.clicked.connect(self.compile_pdf)

controls.addWidget(compile_btn)

Open PDF button

open_btn = QPushButton("Open PDF")

open_btn.clicked.connect(self.open_latest_pdf)

controls.addWidget(open_btn)

controls.addStretch ()

49

Save and close buttons

save_btn = QPushButton("Save PDF")

save_btn.clicked.connect(self.save_pdf)

controls.addWidget(save_btn)

close_btn = QPushButton("Close")

close_btn.clicked.connect(self.close)

controls.addWidget(close_btn)

layout.addLayout(controls)

def load_existing_or_generate_report(self):

""" Load existing LaTeX or generate initial LaTeX report

"""

try:

Create temp directory

self.temp_dir = tempfile.mkdtemp(prefix=’

osdag_report_ ’)

DEBUG: Log what we have available

module_name = getattr(self.main_obj , ’module ’, ’

Unknown ’)

print(f"DEBUG: Module = {module_name}")

print(f"DEBUG: Existing tex file = {self.

existing_tex_file}")

print(f"DEBUG: Existing tex file exists = {self.

existing_tex_file and os.path.exists(self.

existing_tex_file) if self.existing_tex_file else

False}")

print(f"DEBUG: Has report_input = {hasattr(self.

main_obj , ’report_input ’)}")

print(f"DEBUG: Has report_check = {hasattr(self.

main_obj , ’report_check ’)}")

50

if self.existing_tex_file and os.path.exists(self.

existing_tex_file):

Load existing LaTeX file

with open(self.existing_tex_file , ’r’, encoding=’

utf -8’) as f:

self.latex_content = f.read()

print(f"SUCCESS: Loaded existing LaTeX file ({len

(self.latex_content)} characters)")

self.parse_and_compile ()

elif CreateLatex:

Use real CreateLatex

self.generate_with_createlatex ()

else:

No LaTeX available

QMessageBox.critical(self , "Error", "No LaTeX

content available for customization")

except Exception as e:

print(f"ERROR in load_existing_or_generate_report: {e

}")

QMessageBox.critical(self , "Error", f"Failed to load/

generate report: {e}")

def generate_with_createlatex(self):

""" Generate report using actual CreateLatex - simplified

version """

try:

Check if this is a module without CAD support (like

butt_joint_bolted)

module_name = getattr(self.main_obj , ’module ’, ’’)

non_cad_modules = [’Butt Joint Bolted ’, ’

KEY_DISP_BUTTJOINTBOLTED ’]

51

if any(name in str(module_name) for name in

non_cad_modules):

For non -CAD modules , try to use existing LaTeX

if already generated

print(f"INFO: Handling non -CAD module: {

module_name}")

First , check if we already have the LaTeX file

passed from main workflow

if self.existing_tex_file and os.path.exists(self

.existing_tex_file):

print(f"INFO: Using existing LaTeX file for

non -CAD module: {self.existing_tex_file}")

with open(self.existing_tex_file , ’r’,

encoding=’utf -8’) as f:

self.latex_content = f.read()

self.parse_and_compile ()

return

else:

raise Exception("Non -CAD module without

existing LaTeX file")

For CAD -enabled modules - this would need proper

implementation

raise Exception("CAD module LaTeX generation not

implemented in customization dialog")

except Exception as e:

print(f"ERROR: Failed to generate LaTeX: {e}")

QMessageBox.critical(self , "Error", f"Failed to

generate report: {e}")

def parse_and_compile(self):

""" Parse sections and compile initial PDF"""

52

Parse sections and build tree

sections = self.parser.parse_sections(self.latex_content)

if sections:

self.section_tree.build_from_sections(sections)

print(f"SUCCESS: Parsed {len(sections)} sections from

LaTeX")

Compile initial PDF

self.compile_pdf ()

else:

QMessageBox.warning(self , "Warning", "No sections

found in LaTeX content")

def on_selection_changed(self):

""" Handle section selection changes """

if self.auto_compile.isChecked ():

self.compile_pdf ()

def compile_pdf(self):

""" Compile filtered LaTeX to PDF - simplified version """

if not self.latex_content:

return

try:

import shutil

import string

import random

Get selected sections

selected = self.section_tree.get_selected_sections ()

print(f"INFO: Compiling PDF with sections: {selected}

")

Filter LaTeX content

53

filtered_latex = self.filter.filter_content(self.

latex_content , selected)

Create safe temp directory for pdflatex

safe_temp_root = os.path.join(tempfile.gettempdir (),

"osdag_pdf_compile")

os.makedirs(safe_temp_root , exist_ok=True)

safe_subdir = ’’.join(random.choices(string.

ascii_letters + string.digits , k=8))

safe_temp_dir = os.path.join(safe_temp_root ,

safe_subdir)

os.makedirs(safe_temp_dir , exist_ok=True)

Write filtered LaTeX to safe directory

safe_latex_file = os.path.join(safe_temp_dir , "

filtered_report.tex")

with open(safe_latex_file , ’w’, encoding=’utf -8’) as

f:

f.write(filtered_latex)

pdf_file = safe_latex_file.replace(’.tex’, ’.pdf’)

Remove old PDF if exists

if os.path.exists(pdf_file):

os.remove(pdf_file)

print(f"Running pdflatex in safe dir: {safe_temp_dir}

")

Run pdflatex

result = subprocess.run(

[’pdflatex ’, ’-interaction=nonstopmode ’, ’

filtered_report.tex’],

capture_output=True ,

54

text=True ,

timeout =30,

cwd=safe_temp_dir

)

print(f"INFO: pdflatex return code: {result.

returncode}")

if result.returncode == 0 and os.path.exists(pdf_file

):

print(f"SUCCESS: PDF generated: {pdf_file}")

self.latest_pdf = pdf_file

else:

error_msg = "PDF compilation failed"

if result.stderr:

error_msg += f"\n\nErrors :\n{result.stderr

[:500]}"

if result.stdout:

error_msg += f"\n\nOutput :\n{result.stdout

[:500]}"

print(f"ERROR: {error_msg}")

QMessageBox.warning(self , "Compilation Failed",

error_msg)

except subprocess.TimeoutExpired:

error_msg = "PDF compilation timed out (>30s)\n\nThis

might be due to:\ n LaTeX not installed\ n

Missing packages\ n Complex LaTeX content"

print(f"TIMEOUT: {error_msg}")

QMessageBox.warning(self , "Compilation Timeout",

error_msg)

except FileNotFoundError:

error_msg = "pdflatex not found\n\nInstall LaTeX

distribution :\ n Windows: MiKTeX or TeX Live\

n Linux: texlive -full\ n macOS: MacTeX"

55

print(f"ERROR: {error_msg}")

QMessageBox.warning(self , "LaTeX Not Found",

error_msg)

except Exception as e:

error_msg = f"Compilation failed: {e}"

print(f"ERROR: {error_msg}")

QMessageBox.warning(self , "Error", error_msg)

def open_latest_pdf(self):

""" Open the latest generated PDF in external viewer """

if self.latest_pdf and os.path.exists(self.latest_pdf):

try:

if os.name == ’nt’: # Windows

os.startfile(self.latest_pdf)

elif sys.platform == ’darwin ’: # macOS

subprocess.run([’open’, self.latest_pdf])

else: # Linux

subprocess.run([’xdg -open’, self.latest_pdf])

print(f"SUCCESS: Opened PDF: {self.latest_pdf}")

except Exception as e:

print(f"ERROR: Failed to open PDF: {e}")

QMessageBox.warning(self , "Error", f"Failed to

open PDF:\n{e}")

else:

QMessageBox.information(self , "No PDF", "No PDF

generated yet. Please compile first.")

def save_pdf(self):

""" Save customized PDF"""

if not self.latest_pdf or not os.path.exists(self.

latest_pdf):

QMessageBox.warning(self , "No PDF", "No PDF to save.

Please compile first.")

return

56

filename , _ = QFileDialog.getSaveFileName(

self , "Save Customized Report", "Osdag_Custom_Report.

pdf", "PDF files (*.pdf)"

)

if filename:

shutil.copy2(self.latest_pdf , filename)

QMessageBox.information(self , "Success", f"PDF saved

to:\n{filename}")

def closeEvent(self , event):

""" Clean up temp files """

if self.temp_dir and os.path.exists(self.temp_dir):

shutil.rmtree(self.temp_dir , ignore_errors=True)

event.accept ()

def show_customization_dialog(main_obj , parent=None):

""" Main entry point - simple function """

Look for existing .tex file from main_obj

existing_tex_file = None

if hasattr(main_obj , ’report_input ’) and isinstance(main_obj.

report_input , dict):

filename = main_obj.report_input.get(’filename ’)

if filename:

tex_path = f"{filename }.tex"

if os.path.exists(tex_path):

existing_tex_file = tex_path

dialog = ReportCustomizationDialog(main_obj , parent ,

existing_tex_file)

return dialog.exec_()

57

if __name__ == "__main__":

Test with minimal setup

from PyQt5.QtWidgets import QApplication

import sys

app = QApplication(sys.argv)

Mock main object for testing

class MockMainObj:

def __init__(self):

self.report_input = {"test": "value"}

dialog = ReportCustomizationDialog(MockMainObj ())

dialog.show()

sys.exit(app.exec_())

Add your Python code here if the external file is not available

This prevents compilation errors from missing files

5.4.3 Code Components

• Qt Environment Setup: Ensures the correct Qt plugin path is set for cross-

platform compatibility.

• LaTeXParser: Parses LaTeX files to extract sections and subsections, organizing

them into a hierarchical structure for the UI.

• SectionTreeWidget: Custom QTreeWidget that displays sections and subsec-

tions with checkboxes, allowing users to select which parts of the report to include.

• LaTeXFilter: Filters the LaTeX content to include only the selected sections and

subsections, preserving the document structure and preamble.

58

• ReportCustomizationDialog: Main dialog class that brings together the UI,

parsing, filtering, and PDF compilation. Handles user interactions, temporary file

management, and integration with the main application.

• Integration with Summary Popup: The dialog is launched from the summary

popup after the user enters report metadata, allowing seamless workflow from data

entry to report customization.

• PDF Compilation and Saving: The dialog provides options to manually compile

the PDF, open it in an external viewer, and save the final customized report.

5.4.4 Testing and Validation

The report customization dialog was tested with a variety of report templates and user

selection scenarios, including:

• Reports with multiple sections and subsections, verifying correct extraction and

filtering.

• Edge cases where only a subset of sections is selected.

• Error conditions (e.g., missing LaTeX file, invalid selections) to ensure robust error

handling.

Sample outputs were visually inspected and compared with expected results to ensure

correctness and usability.

5.4.5 Current Limitations

• The current implementation focuses on section and subsection selection; future work

could extend customization to figures, tables, and custom environments.

• Integration with a more advanced GUI and support for batch report customization

are potential enhancements.

• Automated testing and integration with CI pipelines would further improve relia-

bility.

59

Program Execution

The main entry point for the program is osdagMainPage.py. To start the program,

open the Osdag folder and start the terminal with that path, execute the following com-

mand from the project root:

$ python osdagMainPage.py

5.4.6 Usage

After completing the design and entering report metadata in the summary popup, the

user is prompted to customize the report. The customization dialog allows selection of

report sections and subsections, compilation of the filtered LaTeX, and saving of the final

PDF report.

5.4.7 System Integration

The customization dialog is integrated with the summary popup ui_summary_popup.py,

ensuring a seamless workflow from data entry to report generation. The dialog can be

launched automatically after the LaTeX file is generated, and temporary files are cleaned

up after use.

Figure 5.1: Report Customization Dialog Interface

60

5.4.8 Future Enhancements

• The current implementation does not support live PDF preview or advanced LaTeX

error diagnostics.

• Future work could include more granular customization (e.g., include/exclude spe-

cific figures or tables) and improved error reporting.

5.5 References

• Osdag documentation: https://osdag.github.io/

• PyQt5 documentation: https://www.riverbankcomputing.com/static/Docs/PyQt5/

• Python official documentation: https://docs.python.org/3/

• LaTeX project: https://www.latex-project.org/

61

https://osdag.github.io/
https://www.riverbankcomputing.com/static/Docs/PyQt5/
https://docs.python.org/3/
https://www.latex-project.org/

Chapter 6

Conclusions

6.1 Tasks Accomplished

During the course of the screening task and the associated report generation project, the

following key tasks were accomplished:

• Developed a custom LaTeX report generator that allows users to select specific sec-

tions and components from a PyLaTeX-generated report for tailored PDF output.

• Implemented robust parsing logic to extract sections, subsections, and other report

components from LaTeX files.

• Designed and tested a user interface for component selection, supporting both

command-line and graphical workflows.

• Automated the filtering and regeneration of LaTeX files based on user input, fol-

lowed by PDF compilation.

• Established a unit testing framework to ensure the correctness and reliability of the

extraction and filtering logic.

• Documented the entire workflow, including code, usage instructions, and integration

steps for future users and developers.

62

6.2 Skills Developed

The project provided an opportunity to develop and strengthen several technical and

professional skills, including:

• Python Programming: Enhanced proficiency in Python, especially in file han-

dling, regular expressions, and modular code design.

• LaTeX Automation: Gained experience in programmatically manipulating La-

TeX documents and automating report generation workflows.

• User Interface Design: Improved skills in designing user-friendly interfaces for

technical tools, both in CLI and GUI contexts.

• Unit Testing: Developed a systematic approach to testing code functionality and

ensuring software reliability.

• Documentation: Practiced clear and comprehensive documentation of code, work-

flows, and user instructions.

• Project Management: Strengthened abilities in task planning, requirement anal-

ysis, and iterative development within a defined project scope.

63

Chapter 7

Internship Work Report

7.1 Overview

This report documents the daily activities and progress made during the FOSSEE Sum-

mer Fellowship 2025 internship at IIT Bombay, working on the Osdag project. The

internship period covered May 15 to June 30, 2025, with a focus on three major tasks:

UI/UX redesign, Butt Joint Bolted Connection reporting enhancements, and Report

Customization Dialog development.

7.2 Project Details

• Name: Srinivas Raghav V C

• Project: Osdag (Open Source Design and Analysis of Steel Structures)

• Internship: FOSSEE Summer Fellowship 2025

• Period: May 15, 2025 – June 30, 2025

• Total Working Days: 33 days (excluding Sundays and holidays)

• Total Hours: 198 hours

64

7.3 Daily Work Log

7.3.1 Week 1: May 15–21, 2025

Date Day Task Hours

15-May-2025 Thursday Initial setup and familiarization with

Osdag codebase, analyzed existing UI

structure

6

16-May-2025 Friday Identified UI improvement areas, began

wireframing for new interface design

7

17-May-2025 Saturday Created wireframes and mockups for

modern UI design, planned modular ar-

chitecture

6

18-May-2025 Sunday Holiday 0

19-May-2025 Monday Started implementing basic UI improve-

ments in PyQt5, focused on green theme

implementation

7

20-May-2025 Tuesday Developed new navigation system and

improved user flow patterns

6

21-May-2025 Wednesday Created responsive layout components

with rounded button designs

7

Table 7.1: Week 1 Daily Activities - UI/UX Design Foundation

7.3.2 Week 2: May 22–28, 2025

Date Day Task Hours

22-May-2025 Thursday Implemented modern styling and com-

prehensive theme system for UI consis-

tency

7

23-May-2025 Friday Developed improved input validation,

error handling, and accessibility features

6

65

Date Day Task Hours

24-May-2025 Saturday Created user-friendly dialog boxes,

tooltips, and help system components

6

25-May-2025 Sunday Holiday 0

26-May-2025 Monday Integrated new UI components with ex-

isting Osdag functionality

7

27-May-2025 Tuesday Implemented progress indicators, loading

states, and keyboard navigation support

6

28-May-2025 Wednesday Developed dark mode implementation

and visual design system refinements

7

Table 7.2: Week 2 Daily Activities - UI/UX Implementation

7.3.3 Week 3: May 29–June 4, 2025

Date Day Task Hours

29-May-2025 Thursday Analyzed IS 800:2007 requirements for

butt joint bolted connections reporting

7

30-May-2025 Friday Began implementing long joint reduction

factor function (cl 10 3 3 1)

6

31-May-2025 Saturday Completed large grip reduction factor

function (cl 10 3 3 2) with LaTeX for-

matting

6

01-Jun-2025 Sunday Holiday 0

02-Jun-2025 Monday Developed comprehensive save design

method for butt joint bolted module

7

03-Jun-2025 Tuesday Integrated reduction factor calculations

with Osdag reporting workflow

6

04-Jun-2025 Wednesday Testing and validation of butt joint

bolted connection reporting enhance-

ments

7

Table 7.3: Week 3 Daily Activities - Butt Joint Bolted Connection Development

66

7.3.4 Week 4: June 5–11, 2025

Date Day Task Hours

05-Jun-2025 Thursday Enhanced error handling and debugging

for butt joint bolted reporting

6

06-Jun-2025 Friday Code documentation and comments for

butt joint bolted enhancements

7

07-Jun-2025 Saturday Started analysis of report customization

requirements and user needs

6

08-Jun-2025 Sunday Holiday 0

09-Jun-2025 Monday Designed architecture for report cus-

tomization dialog using PyQt

7

10-Jun-2025 Tuesday Implemented LaTeX parser for extract-

ing sections and subsections

6

11-Jun-2025 Wednesday Developed SectionTreeWidget with

checkbox functionality for report selec-

tion

7

Table 7.4: Week 4 Daily Activities - Report Customization Foundation

7.3.5 Week 5: June 12–18, 2025

Date Day Task Hours

12-Jun-2025 Thursday Created LaTeX filtering mechanism to

process user-selected report sections

6

13-Jun-2025 Friday Implemented ReportCustomizationDia-

log with PDF compilation capabilities

7

14-Jun-2025 Saturday Integrated report customization dialog

with ui summary popup.py

6

15-Jun-2025 Sunday Holiday 0

16-Jun-2025 Monday Added Qt environment setup and cross-

platform compatibility features

7

67

Date Day Task Hours

17-Jun-2025 Tuesday Implemented temporary file management

and cleanup for report generation

6

18-Jun-2025 Wednesday Developed PDF saving functionality and

external viewer integration

7

Table 7.5: Week 5 Daily Activities - Report Customization Implementation

7.3.6 Week 6: June 19–25, 2025

Date Day Task Hours

19-Jun-2025 Thursday Comprehensive testing of all three major

project components

7

20-Jun-2025 Friday Performance optimization and code

cleanup across all modules

6

21-Jun-2025 Saturday User acceptance testing and feedback

integration for UI improvements

6

22-Jun-2025 Sunday Holiday 0

23-Jun-2025 Monday Documentation creation for all imple-

mented features and enhancements

7

24-Jun-2025 Tuesday Integration testing between UI redesign

and reporting functionalities

6

25-Jun-2025 Wednesday Final validation of IS 800:2007 compli-

ance in butt joint reporting

7

Table 7.6: Week 6 Daily Activities - Testing and Integration

7.3.7 Week 7: June 26–30, 2025

Date Day Task Hours

26-Jun-2025 Thursday Final testing and bug fixes for all imple-

mented components

7

68

Date Day Task Hours

27-Jun-2025 Friday Code review, optimization, and prepara-

tion for project handover

6

28-Jun-2025 Saturday Created comprehensive documentation

and user guides

6

29-Jun-2025 Sunday Holiday 0

30-Jun-2025 Monday Final project presentation preparation

and handover documentation

6

Table 7.7: Week 7 Daily Activities - Project Completion

69

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

70

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Context
	Problem Statement
	Work Completed
	Python Code
	Description of the Script
	Implementation
	Code Overview
	Testing and Results
	Limitations and Future Work

	Internship Project: Revamp Ideas for Osdag Interface
	Context
	Problem Statement
	Design Implementation
	Design Philosophy

	Implementation Details
	Modular Component Architecture
	Visual Design System
	User Interface Improvements
	Iterative Design Process
	Accessibility Enhancements
	Final Implementation

	Conclusion

	Internship Project: Enhancements for Butt Joint Bolted Connection Reporting in Osdag
	Context
	Problem Statement
	Implementation Overview
	Python Code
	Script Architecture
	Source Code
	Code Components
	Testing and Validation
	Current Limitations

	Documentation
	References

	Internship Project: Report Customization Dialog in Osdag
	Context
	Problem Statement
	Implementation Overview
	Python Code
	Script Architecture
	Source Code
	Code Components
	Testing and Validation
	Current Limitations
	Usage
	System Integration
	Future Enhancements

	References

	Conclusions
	Tasks Accomplished
	Skills Developed

	Internship Work Report
	Overview
	Project Details
	Daily Work Log
	Week 1: May 15–21, 2025
	Week 2: May 22–28, 2025
	Week 3: May 29–June 4, 2025
	Week 4: June 5–11, 2025
	Week 5: June 12–18, 2025
	Week 6: June 19–25, 2025
	Week 7: June 26–30, 2025

	Bibliography

