
FOSSEE Winter Internship Report
On

Development of Bolt Spacing Diagram Modules for

Osdag and Exploration of Node-Based Editors

Submitted by

Dhimanth Kumar Singh

4rd Year B.Tech Student, Department of Computer Science and Engineering

Manipal Institute of Technology

Manipal

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

August 5, 2025

Acknowledgments

• Start with a general statement of thanks. Express your overall gratitude to everyone

who supported you during your project or research.

• Project staff at the Osdag team, Ajmal Babu M. S., Ajinkya Dahale, and Parth

Karia,

• Osdag Principal Investigator (PI) Prof. Siddhartha Ghosh, Department of Civil

Engineering at IIT Bombay

• FOSSEE PI Prof. Kannan M. Moudgalya, FOSSEE Project Investigator, Depart-

ment of Chemical Engineering, IIT Bombay

• FOSSEE Managers Usha Viswanathan and Vineeta Parmar and their entire team

• Acknowledge the support from the National Mission on Education through In-

formation and Communication Technology (ICT), Ministry of Education (MoE),

Government of India, for their role in facilitating this project

• Acknowledge your colleagues who worked with you during your internship or project.

• If appropriate, thank your college, department, head, and principal for their support

during your studies.

1

Contents

1 Introduction 4

1.1 National Mission in Education through ICT 4

1.1.1 ICT Initiatives of MoE . 5

1.2 FOSSEE Project . 6

1.2.1 Projects and Activities . 6

1.2.2 Fellowships . 6

1.3 Osdag Software . 7

1.3.1 Osdag GUI . 8

1.3.2 Features . 8

2 Screening Task Assignment 9

2.1 Tasks Done . 9

3 Internship Task 1 Bolt Layout Generator for Steel Connections in

Osdag 12

3.1 Problem Statement . 12

3.2 Tasks Done . 12

3.2.1 Overview . 12

3.2.2 Methodology & Process Flow . 13

3.2.3 of File Responsibilities . 14

3.3 Python Code . 14

3.3.1 Common Components Across All Scripts 15

3.3.2 Description of the Script . 16

3.3.3 Python Code . 16

3.4 Documentation . 26

3.4.1 Directory Structure . 26

3.4.2 Program Start . 27

3.4.3 Using the GUI Detailing Modules 27

4 Internship Task 2: Visual Node Editor Integration 29

4.1 4.1 Task 2: Problem Statement . 29

2

4.2 4.2 Task 2: Tasks Done . 29

4.3 4.3 Task 2: Documentation . 31

5 Conclusions 36

5.1 5.1 Tasks Accomplished . 36

5.2 5.2 Skills Developed . 37

Appendix A: Internship Work Report 38

Bibliography 40

3

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

4

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

5

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

6

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

7

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

8

https://osdag.fossee.in

Chapter 2

Screening Task Assignment

2.1 Tasks Done

Task 1: 3D Modeling of a Laced Compound Column (using

PythonOCC)

This task focuses on creating a detailed 3D model of a steel laced column using PythonOCC.

The model includes:

• I-Section Creation:

Custom I-sections are constructed by combining flanges and a web using BRepPrimAPI MakeBox,

and fused together using BRepAlgoAPI Fuse.

Dimensions: 5500mm (length), 100mm (width), 200mm (depth).

• Plate Creation:

Rectangular end plates (300mm×430mm×10mm) are modeled and positioned at

both ends of the column.

• Diagonal Lace Creation:

Diagonal lacing elements are formed by defining 4-point polygonal faces and ex-

truding them by 8mm to create solid braces.

• Lace Generation:

Multiple diagonal laces are automatically generated between the two I-sections at

regular intervals using computed polygon coordinates.

9

• Assembly and Visualization:

The complete assembly (I-sections, plates, laces) is positioned in 3D space and

rendered using the PythonOCC viewer. Color coding is used to visually distinguish

components.

Figure 2.1: 3D Model of Laced Column using PythonOCC

10

Task 2: Shear Force and Bending Moment Diagram Plotting

(using Matplotlib)

This task involves reading structural analysis data and generating visual diagrams:

• CSV Reading:

A CSV file is read to extract values for distance (in meters), shear force (in kN),

and bending moment (in kNm).

• SFD/BMD Plotting:

Two subplots are generated using Matplotlib:

– A Shear Force Diagram (SFD) is plotted using a filled step plot.

– A Bending Moment Diagram (BMD) is plotted using a similar format.

– Maximum and minimum points on both diagrams are annotated for better

interpretation.

Figure 2.2: Shear Force and Bending Moment Diagrams

11

Chapter 3

Internship Task 1 Bolt Layout Gener-

ator for Steel Connections in Osdag

3.1 Problem Statement

In structural steel design, different types of connections such as beam-to-beam, beam-to-

column, and base plates require accurate bolt layouts and spacing to ensure structural

integrity and compliance with standards. Manually calculating and drafting bolt ar-

rangements for each connection is time-consuming and error-prone. The objective of this

task was to automate the generation and visualization of bolt layouts for various steel

connections using Python and PyQt5, making it easier for engineers to verify connection

adequacy and prepare fabrication drawings

3.2 Tasks Done

3.2.1 Overview

This task involved the design and development of a visual bolt layout generator for steel

structural connections using Python and PyQt5. The goal was to automate the drafting

of bolt patterns and dimension annotations for different types of connections such as base

plates, end plates, and cover plates, commonly used in steel structures.

12

3.2.2 Methodology & Process Flow

The following structured process was followed throughout the task:

1. Requirement Analysis

• Studied various steel connection types and their bolt arrangement standards

(pitch, edge, gauge, end distances).

• Identified which parameters affect bolt placement and how dimensioning is

typically represented in structural drawings.

2. Template Design (Reusable GUI Structure)

• Created a standard PyQt5-based GUI template with two main components:

– Left Panel: Display of input parameters like plate size and bolt dimen-

sions.

– Right Panel: Dynamic graphical view of the bolt layout using QGraphicsView.

• Figure 1: Template UI layout used across all connection types (Insert GUI

screenshot here).

3. Modular Code Implementation

• A base template was reused across all scripts; only the bolt layout logic in

createDrawing() was customized per connection type.

• Implemented support for:

– Centering bolts

– Drawing symmetrical patterns

– Auto-scaling views based on plate dimensions

4. Dynamic Parameter Integration

• Extracted design values (bolt diameter, edge distance, etc.) from the main

connection object.

• Displayed values in the UI and used them to drive drawing logic.

5. Dimensioning Implementation

13

• Developed two helper methods:

– addHorizontalDimension()

– addVerticalDimension()

These methods draw arrows, dimension lines, and labels based on bolt and

plate geometry.

3.2.3 of File Responsibilities

Script/File Name Connection Type Customization Focus

b2bcoverplate.py Beam-to-beam (cover

plate)

Top View of Connection

baseplatedetailing.py Column base plate Top View of Connection

cleatangledetailing.py Angle cleat connections Top View of Connection

b2bEPsketch.py Beam-to-beam end plate Side View of Connection

baseplatehollow.py Hollow sections (base) Top View of Connection

b2cendplateSketch.py Beam-to-column end plate

(sketch)

Side View of the

Connection

BC2Cendplate.py Beam-column-column end

plate

Top View of Connection

Beam2ColEnddetailing.py Beam-to-column end plate

detailing

Top View of Connection

3.3 Python Code

This section presents Python scripts developed during the internship for visualizing bolt

patterns in structural steel connections. The scripts are built using the PyQt5 framework

and were tailored for various types of connections like base plates, cover plates, cleat

angles, and end plates. All scripts follow a consistent structure and aim to assist engineers

in checking bolt layouts against spacing rules visually and dimensionally.

14

3.3.1 Common Components Across All Scripts

1. addHorizontalDimension() and addVerticalDimension()

These two helper functions are defined in every script to handle the drawing of

dimension lines and labels. They:

• Draw arrows and extension lines using QGraphicsLineItem and QPolygonF

• Add dimension text with proper font size and position

• Maintain visual clarity regardless of plate scale

These methods ensure that all bolts and plate edges are clearly annotated for fab-

rication reference.

2. initUI()

This method is also common across all scripts and performs the following:

• Sets up the main window layout

• Creates the left panel to show parameters like bolt diameter, edge distance,

pitch, etc.

• Creates the right panel (QGraphicsView) to display the bolt and plate drawing

• Automatically scales the view for larger plates

• Calls createDrawing() which is the only method that differs in each file

This method ensures a consistent user interface across all connection types.

3. init () (Constructor Method)

In each class (e.g., B2Bcoverplate, baseplatedetailing), the init () method is

responsible for:

• Receiving the connection object and determining whether it’s a web, flange,

or base connection

• Extracting values like:

– Plate dimensions (length/width/height)

– Bolt diameter

15

– Spacing values (pitch, gauge, edge, end)

– Bolt capacity or arrangement

• Storing these values as object attributes

• Triggering the GUI with self.initUI()

The constructor is where the script becomes specialized for a particular connection

type.

3.3.2 Description of the Script

The script is structured as follows:

• **Input Parameters**: The user specifies the beam and column sections, applied

shear load, and bolt properties.

• **Design Calculations**: The program computes the number of bolts required,

their arrangement, and verifies the adequacy of the end plate and bolt group.

• **Output**: Results include the number of bolts, their layout, and adequacy checks

for the connection components.

3.3.3 Python Code

The Python script is shown below. Each section is commented for clarity.

1 . b2bcoverplateweld.py – createDrawing()

The createDrawing() method in this file generates a top view of a welded cover plate

used in beam-to-beam connections. It visually represents the plate geometry along with

horizontal and vertical welds around its boundary.

Key Steps

• Plate Drawing: The base plate is drawn using:

rect_item = QGraphicsRectItem(QRectF(0, 0, plate_length ,

plate_width))

self.scene.addItem(rect_item)

16

• Dimensioning: Plate dimensions are annotated using:

self.addHorizontalDimension (0, -30, self.plate_length , -30, f

"{self.plate_length} mm", pen)

self.addVerticalDimension(self.plate_length + 30, 0, self.

plate_length + 30, self.plate_width , f"{self.plate_width}

mm", pen)

• Weld Visualization: Welds are represented as red rectangles placed around the

plate.

– Horizontal welds on top and bottom:

top_weld = QGraphicsRectItem(QRectF(0, -weld_size ,

plate_length , weld_size))

bottom_weld = QGraphicsRectItem(QRectF(0, plate_width ,

plate_length , weld_size))

– Vertical welds (left and right), split due to weld gap:

left_top = QGraphicsRectItem(QRectF(-weld_size , 0,

weld_size , half_height))

right_bottom = QGraphicsRectItem(QRectF(plate_length ,

plate_width - half_height , weld_size , half_height))

This visual representation provides clarity for weld detailing and helps ensure correct

fabrication of beam-to-beam cover plate connections.

2 . B2bEPSketch.py – createDrawing()

The createDrawing() method generates a top view layout of a dual-plate base system

with beams and stiffeners on both sides. The drawing includes plate outlines, detailed

stiffener arrangements, beam placements, and dimension annotations to represent a two-

way structural connection, typically used for hollow sections or parallel beam connections.

Key Functionalities

• Plate Layout: Two vertical plates are drawn with appropriate spacing between

them. The layout is centered in the view using:

17

self.scene.addRect(start_x , start_y , plate_thickness ,

plate_height , blue_pen)

self.scene.addRect(start_x + plate_thickness , start_y ,

plate_thickness , plate_height , blue_pen)

• Stiffener Representation: Horizontal and vertical stiffeners are added on both

sides of each plate. Cap stiffeners are shown using polygon shapes like:

polygon_tl = QGraphicsPolygonItem(QPolygonF(points_tl))

self.scene.addItem(polygon_tl)

• Beam Visualization: Beams are placed on the left and right of the plate system

to simulate a beam-to-plate-to-beam configuration:

self.scene.addRect(start_x - beam_width , beam_y , beam_width ,

beam_height , pen)

• Cap Detailing: Additional triangular or polygonal shapes are used to represent

cap stiffeners at corners, giving a detailed visual of end welds or reinforcement areas.

• Dimensioning: Horizontal and vertical distances such as plate height, stiffener

width, and beam spacing are added using:

self.addHorizontalDimension (...)

self.addVerticalDimension (...)

This method allows the engineer or fabricator to visually verify the complete geometry

of a complex dual-sided plate and stiffener system in a clear, scalable format.

3 . baseplatedetailing.py – createDrawing()

The createDrawing() method generates a top view of a base plate showing the column

section, flange/web geometry, optional stiffeners, and both outer and inner bolt place-

ments. This layout helps in checking space constraints, fitment, and verifying spacing

and edge rules for fabrication.

18

Key Functionalities

• Base Plate and Column Geometry: A rectangle is drawn to represent the base

plate using:

rect_item = QGraphicsRectItem(QRectF(0, 0, plate_length ,

plate_width))

The column web is illustrated with two horizontal lines:

self.scene.addLine(web_left_x , web_top_y , web_right_x ,

web_top_y , outline_pen)

self.scene.addLine(web_left_x , web_bot_y , web_right_x ,

web_bot_y , outline_pen)

Flanges on both sides are drawn with vertical and horizontal lines.

• Flange Stiffeners: If self.stiff flange length is valid, stiffeners are added

adjacent to each flange. For example:

self.scene.addRect(stiffener_left_top , outline_pen , red_brush

)

• Web Stiffeners Along and Across: If self.stiff along thickness is speci-

fied:

self.scene.addRect(stiffener_web_left , outline_pen , red_brush

)

self.scene.addRect(stiffener_web_right , outline_pen ,

red_brush)

And for across stiffeners:

self.scene.addRect(stiffener_web_top , outline_pen , red_brush)

self.scene.addRect(stiffener_web_bot , outline_pen , red_brush)

• Outer Bolt Placement (Left and Right Edges): The number of bolts is dy-

namically computed. Bolt holes are drawn using:

19

self.scene.addEllipse(x - radius , y_top - radius , 2 * radius ,

2 * radius , outline_pen)

• Inner Bolt Placement (Around Web): For example, if 4 bolts are required:

self.scene.addEllipse(x1 - radius , y1 - radius , 2 * radius , 2

* radius , outline_pen)

• Dynamic Edge Adjustments: Edge distance is recalculated based on bolt count

using:

edge =
plate length− column len− 2 · flange thickness

4

• Final Dimensioning: All relevant dimensions are annotated using:

self.addDimensions(black_pen)

This method provides a complete visual of base plate geometry including bolt spacing,

column profiles, and optional stiffeners.

4 . baseplatehollow.py – createDrawing()

The createDrawing() method produces a top view layout of a base plate with a hollow

column section (either circular or rectangular), vertical and horizontal stiffeners, and

bolt placement at four corners. It dynamically adapts the drawing based on whether the

section is RHS/SHS or a circular hollow section.

Key Functionalities

• Base Plate and Column Section:

A base plate is drawn as a white rectangle. The column section is checked using

self.column section.startswith(’RHS’) or ’SHS’.

– For rectangular hollow sections, two nested rectangles are drawn to represent

the column wall thickness.

– For circular sections, nested ellipses are used to represent the outer and inner

hollow boundaries:

20

self.scene.addEllipse(top_left_x , top_left_y , col_len ,

col_width , outline_pen)

• Stiffener Drawing:

Stiffeners are placed as follows:

– Vertically above and below the column along the plate edges:

self.scene.addRect(stiff_x , stiff_top , stiff_thickness ,

stiff_height , outline_pen , QBrush(Qt.red))

– Horizontally to the left and right of the column:

self.scene.addRect(stiff_x , stiff_start_y , stiff_length ,

stiff_height , outline_pen , QBrush(Qt.red))

The type of stiffener (B-type, D-type, or OD) is selected based on the section type.

• Bolt Placement:

Four bolts are placed at the corners of the base plate using:

self.scene.addEllipse(x - radius , y - radius , hole_dia ,

hole_dia , outline_pen)

Dimensions from the plate edge (edge, end) are extracted from the input parame-

ters.

• Dimensioning:

The overall plate size is annotated using:

self.addHorizontalDimension (0, -30, self.plate_length , -30, f

"{self.plate_length} mm", pen)

self.addVerticalDimension(self.plate_length +30, 0, self.

plate_length +30, self.plate_width , f"{self.plate_width} mm

", pen)

This method adapts well to both rectangular and circular hollow columns and shows

all key fabrication information, including bolt positioning and stiffener detailing.

21

5 . Beam2ColEnddetailing.py – createDrawing()

The createDrawing() method produces a top view or side view layout (based on a flag)

of a beam-to-column end plate connection. The drawing includes flanges, web lines,

stiffeners, and bolt placement. It dynamically adapts to either full plate detailing (flag

== 0) or flange-only detailing (flag != 0).

Key Functionalities

• View Toggle:

The function uses self.flag to switch between full plate view and flange-only

detailing:

– If flag == 0, a full top view of the plate is drawn.

– If flag != 0, only the flange portion is visualized.

• If flag == 0 (Full Plate View):

– Base Plate Geometry:

The entire end plate is drawn using:

rect_item = QGraphicsRectItem(QRectF(0, 0,

webdetailinglen , webdetailingwidth))

– Web and Flange Representation:

Orange horizontal and vertical lines depict flange and web profiles using:

self.scene.addLine (...)

– Bolt Placement (Web):

Bolts are placed on both sides of the web, with columns calculated as:

xleft = center x− web thick

2
− web end

xright = center x +
web thick

2
+ web end

Rows use varying pitches like pitch1, pitch2, etc.

22

– Dimensioning:

Horizontal and vertical dimensions for plate size, web-to-bolt distance, and

bolt pitch are added using:

self.addHorizontalDimension (...)

self.addVerticalDimension (...)

• If flag != 0 (Flange-Only View):

– Flange Plate and Stiffener Drawing:

A half-height flange plate is drawn along with a central stiffener using:

self.scene.addRect(center_x - stiff_thick / 2, 0,

stiff_thick , stiff_len)

– Flange Web Boundary Lines:

Orange lines mark the flange top and bottom and web boundaries.

– Bolt Placement (Flange):

∗ Two bolts near the stiffener are placed at a horizontal offset of flangeend.

∗ Additional web bolts are arranged vertically using the pitch cycle.

– Flexible Layout:

Bolt coordinates and counts adjust dynamically based on parameters like

self.web bolts, pitch1--4, and flangeend.

•

This method provides a detailed layout for both full end plate and flange-only config-

urations in beam-to-column connections. It accurately shows bolt pitch, alignment,

and stiffener geometry for fabrication and design validation.

6 . beam2beamcoverplatedetailing.py – createDrawing()

The createDrawing()method generates a top view layout of a beam-to-beam cover plate

connection with customizable bolt rows and columns. It adapts to different combinations

of odd and even bolt counts to create a balanced, symmetric pattern.

23

Key Functionalities

• Base Plate Drawing:

A rectangle is drawn to represent the cover plate using QGraphicsRectItem. The

plate dimensions are annotated using:

self.addHorizontalDimension (0, -30, self.plate_length , -30, f

"{self.plate_length} mm", pen)

self.addVerticalDimension(self.plate_length +30, 0, self.

plate_length +30, self.plate_width , f"{self.plate_width} mm

", pen)

• Bolt Layout (Symmetrical):

Bolts are arranged based on the following input parameters: rows, cols, pitch,

gauge, edge, end, and bolt diameter.

– For odd rows, bolts are drawn symmetrically across a central horizontal axis.

– For odd columns, bolts are drawn symmetrically across a central vertical

axis.

– The method handles all combinations and ensures mirrored bolt positioning

using nested loops.

Example logic for odd rows:

x_center = self.plate_length / 2

y_center = end + row * pitch

y_center = self.plate_width - end - row * pitch

• Bolt Drawing:

Each bolt is drawn using:

self.scene.addEllipse(x_center - radius , y_center - radius ,

hole_dia , hole_dia , outline_pen)

• Bolt and Hole Dimensioning:

Edge distance, end distance, and hole diameter are annotated below or beside each

bolt using:

24

self.addHorizontalDimension (...)

self.addVerticalDimension (...)

This method provides a flexible layout that adapts to any number of rows and columns,

making it suitable for various bolt configurations in cover plate connections.

7 . cleatangledetailing.py – createDrawing()

The createDrawing() method generates a top view of a cleat angle bolt layout. It

accounts for varying gauges, end and edge distances, and dynamically calculates bolt

positions based on the number of rows and columns. The layout is typically asymmetric,

used where cleats connect secondary structural members.

Key Functionalities

• Parameter Handling:

The method extracts parameters like pitch, end, edge, hole diameter, rows, and

cols from the input dictionary params. It supports both:

– a single gauge value, and

– alternating values gauge1 and gauge2.

• Plate and Scene Setup:

The scene rectangle is defined with extra space for dimensioning using:

self.scene.setSceneRect(-h_offset , -v_offset , width + 2*

v_offset , height + 2* h_offset)

self.scene.addRect(0, 0, width , height , dimension_pen)

• Bolt Placement (Right to Left):

For each bolt in the grid, the X-position starts from the right edge and subtracts

gauges in alternating sequence to support unequal spacing:

– For even columns: subtract gauge1

– For odd columns: subtract gauge2

25

The bolts are added using:

self.scene.addEllipse(x, y, hole_diameter , hole_diameter ,

outline_pen)

• Dimensioning:

After plotting all bolt holes, the function calls:

self.addDimensions(params , dimension_pen)

which draws standard pitch, edge, end, and gauge annotations on the plate layout.

This drawing function allows for accurate representation of cleat angles with irregular

or asymmetric bolt arrangements and ensures all relevant dimensioning is visualized for

fabrication.

3.4 Documentation

3.4.1 Directory Structure

The Osdag application follows the directory structure below:

• osdagMainPage.py – Main entry point of the application

• Common.py – Contains shared utility functions

• ResourceFiles/ – Stores shared assets such as:

– images/ – For GUI illustrations

– last designs/ – For storing recently used designs

• design type/ – Contains module-specific folders

• design report/ – Generates and saves report PDFs

• cad/ – For exporting CAD views

• gui/ – Contains GUI templates and all detailing scripts:

– ui template.py – The common UI base used by all detailing views

26

– beam2beamcoverplatedetailing.py

– b2bcoverplateweld.py

– b2bEPsketch.py

– b2cendplateSketch.py

– baseplatedetailing.py

– baseplatedetailinghollow.py

– BC2Cendplate.py

– Beam2ColEnddetailing.py

– cleatangledetailing.py

– endplatecnndetailing.py

3.4.2 Program Start

To start the Osdag application:

1. Open a terminal and navigate to the Osdag project root directory.

2. Run the following command:

python osdagMainPage.py

3. This launches the Osdag main interface, from which various structural design mod-

ules can be accessed.

3.4.3 Using the GUI Detailing Modules

Each structural design module includes a ”Detailing” button within its GUI.

To generate a spacing diagram for bolts or plates:

1. Enter input parameters for the structural model (e.g., plate size, bolt pitch, edge

distance).

2. Click the Detailing button.

3. The appropriate script (e.g., baseplatedetailing.py or b2bcoverplateweld.py)

is triggered.

27

4. The corresponding createDrawing() function uses the QGraphicsScene to:

• Draw the base plate using:

self.scene.addRect(0, 0, plate_length , plate_width , pen)

• Position bolts using:

self.scene.addEllipse(x - r, y - r, 2 * r, 2 * r,

outline_pen)

• Add dimension lines using:

self.addHorizontalDimension (...)

self.addVerticalDimension (...)

The final output is a scaled, annotated diagram showing the bolt layout and dimen-

sions, used for visual verification and documentation.

28

Chapter 4

Internship Task 2: Visual Node Edi-

tor Integration

4.1 4.1 Task 2: Problem Statement

Osdag currently uses a static CAD-style view for visualizing structural connections. To

enhance interactivity, flexibility, and modular control, we explored replacing the fixed

layout system with a visual node-based editor. This system would allow users to drag,

connect, and configure components like plates, bolts, and stiffeners in a node graph,

similar to popular visual programming tools.

The goal was to evaluate tools that can integrate smoothly into Osdag’s PyQt-based

environment while offering dynamic visual workflows.

4.2 4.2 Task 2: Tasks Done

I explored visual node editors for integration and comparison, specifically NodeGraphQt

and PyFlow. Here is a summary of my findings:

Video Documentation

There are no official tutorial videos available for either NodeGraphQt or PyFlow. There-

fore, I manually tested both libraries to assess their usability, documentation quality, and

integration capabilities.

29

Additionally, I created a short demo video (without audio) to showcase how the

NodeGraphQt editor looks and functions.

Environment Compatibility

• PyFlow is not compatible with the osdag-editable environment due to con-

flicting dependencies, especially with PyQt/PySide versions.

• NodeGraphQt works smoothly within Osdag and supports PyQt5.

Setup for NodeGraphQt

To install and test NodeGraphQt, follow the steps below:

1. Clone the repository:

git clone https :// github.com/jchanvfx/NodeGraphQt.git

(Optionally place it inside your Osdag project folder for local reference.)

2. Install the package:

pip install NodeGraphQt

Creating and Connecting Nodes via Code

NodeGraphQt provides full programmatic control over the node graph. Nodes can be

created dynamically and connected using the following commands:

• graph.create node(...)

• node.set input(...)

• node.set output(...)

• port.connect to(...)

This enables flexible, data-driven workflows that can be embedded into custom GUIs.

It is particularly useful for modular design applications like Osdag where multiple design

objects (plates, bolts, welds) need to be visually and functionally linked.

30

4.3 4.3 Task 2: Documentation

NodeGraphQt Sample Nodes and Code Snippets

This section documents various node types explored and tested within NodeGraphQt.

Each node is initialized using a unique creation function and includes configuration op-

tions such as custom names, colors, and icons.

BasicNodeA

Code to create node:

n_basic_a = graph.create_node(’nodes.basic.BasicNodeA ’,

text_color=’#feab20 ’)

n_basic_a.set_disabled(True)

Figure 4.1: BasicNodeA Example

BasicNodeB (with Custom Icon)

Code to create node:

n_basic_b = graph.create_node(’nodes.basic.BasicNodeB ’, name=’

custom icon’)

n_basic_b.set_icon(Path(BASE_PATH , ’star.png’))

31

Figure 4.2: BasicNodeB with Icon

CustomPortsNode

Code to create node:

n_custom_ports = graph.create_node(’nodes.custom.ports.

CustomPortsNode ’, name=’custom ports ’)

Figure 4.3: CustomPortsNode Example

TextInputNode

Code to create node:

n_text_input = graph.create_node(’nodes.widget.TextInputNode ’,

name=’text node’, color=’#0 a1e20’)

32

Figure 4.4: TextInputNode Example

CheckboxNode

Code to create node:

n_checkbox = graph.create_node(’nodes.widget.CheckboxNode ’, name=

’checkbox node’)

Figure 4.5: CheckboxNode Example

DropdownMenuNode

Code to create node:

n_combo_menu = graph.create_node(’nodes.widget.DropdownMenuNode ’,

name=’combobox node’)

Figure 4.6: DropdownMenuNode Example

CircleNode

Code to create node:

33

n_circle = graph.create_node(’nodes.basic.CircleNode ’, name=’

circle node’)

Figure 4.7: CircleNode Example

GroupNode

Code to create node:

n_group = graph.create_node(’nodes.group.MyGroupNode ’)

Figure 4.8: GroupNode Example

Backdrop Node

Code to create node:

n_backdrop = graph.create_node(’Backdrop ’)

n_backdrop.wrap_nodes ([n_custom_ports , n_combo_menu])

Figure 4.9: Backdrop Node Example

34

Connecting Nodes in NodeGraphQt

Step 1: Create Two Nodes

n_text_input = graph.create_node(’nodes.widget.TextInputNode ’,

name=’Text Input ’)

n_checkbox = graph.create_node(’nodes.widget.CheckboxNode ’, name=

’Checkbox ’)

Step 2: Connect Output Port to Input Port

• Method 1: Using set output

n_text_input.set_output (0, n_checkbox.input (0))

• Method 2: Using set input

n_checkbox.set_input (0, n_text_input.output (0))

• Method 3: Using connect to() from the port object

out_port = n_text_input.output (0)

in_port = n_checkbox.input (0)

out_port.connect_to(in_port)

35

Chapter 5

Conclusions

5.1 5.1 Tasks Accomplished

During the course of the internship, I completed two primary tasks:

Task 1: Bolt Layout Visualization GUI Modules

Developed multiple Python scripts using PyQt5 and QGraphicsScene to visualize bolt

layouts for various steel connection types. Each script allows users to input parameters

like plate dimensions, bolt count, edge/pitch/gauge distances, and generates annotated

spacing diagrams. These models include base plates, beam-to-beam and beam-to-column

connections, cleat angles, and end plates. All modules are integrated with Osdag’s UI

structure and follow a unified design template.

Task 2: Exploration of Interactive Node-Based UIs

Evaluated visual node editors to modernize and modularize Osdag’s interface. Specifically

explored NodeGraphQt and PyFlow for suitability:

• Created a silent demo video for NodeGraphQt

• Compared setup complexity and environment compatibility

• Successfully installed and tested NodeGraphQt in osdag-editable, enabling dy-

namic creation and connection of nodes through Python code

• Documented PyFlow incompatibility due to PyQt conflicts

This dual-track effort contributed to both functional bolt design tools and forward-

looking UI possibilities for future development in Osdag.

36

5.2 5.2 Skills Developed

Over the internship period, I developed the following skills:

Technical Skills

• Proficient in PyQt5 GUI development, including widget layout, graphics rendering,

and event-driven interactions

• Experience with QGraphicsScene, QGraphicsItem, and dynamic drawing methods

like addEllipse, addRect, and custom dimension lines

• Learned to integrate Python-based visual editors like NodeGraphQt into an existing

software environment

• Familiarity with handling parametric inputs, calculating geometry, and generating

real-time drawings

Software & Tooling

• Used tools like Git, VS Code

• Worked within Osdag’s modular project structure and contributed GUI code in a

structured, reusable format

Professional Skills

• Collaborated with mentors to align work with project goals

• Maintained consistent documentation and project reporting

• Explored, compared, and tested third-party libraries independently

This internship significantly improved my confidence in GUI-based application devel-

opment and laid the foundation for contributing to open-source structural engineering

tools.

37

Appendix A: Internship Work Report

Name: Dhimanth Kumar Singh

Project: Osdag

Internship: Semester Long Intern

Date Tasks Done Remarks

19 May 2025 Getting familiar with Osdag

codebase and structure

Setup environment, explored repo

20 May 2025 Explored UI architecture,

QGraphicsScene basics

Studied existing GUI logic

21 May 2025 Understood detailing module

structure

Focused on ui template.py

22–23 May 2025 Developed

baseplatedetailing.py

Added bolt drawing & dimen-

sions

24–25 May 2025 Completed

baseplatedetailinghollow.py

Hollow section handling

26–27 May 2025 Built

beam2beamcoverplatedetailing.py

Symmetric bolt logic

28–29 May 2025 Worked on

b2bcoverplateweld.py

Weld detailing + red brush visu-

als

38

Date Tasks Done Remarks

30–31 May 2025 Developed

cleatangledetailing.py

Unequal gauge pattern support

1–2 June 2025 Finished b2bEPsketch.py End plate logic for beam-beam

3–4 June 2025 Created b2cendplateSketch.py Basic layout for beam-column

5–6 June 2025 Implemented BC2Cendplate.py Compact detailing, ellipse logic

7–8 June 2025 Finalized

Beam2ColEnddetailing.py

Flag-based dual view logic

9–10 June 2025 Added

endplatecnndetailing.py

Special end plate with pitch calc

11–13 June 2025 Unified UI behavior across all de-

tailing files

Refactored to match

ui template

14–17 June 2025 Testing & visual tweaks across all

models

Verified bolt positioning accuracy

18 June 2025 Started research into node-based

UI systems

Planning UI upgrade ideas

19–21 June 2025 Explored NodeGraphQt: instal-

lation and testing

Confirmed it works with Osdag

22–24 June 2025 Created demo video of Node-

GraphQt usage

Silent clip for documentation

25–27 June 2025 Tested PyFlow and noted com-

patibility issues

PyQt/PySide conflict observed

28–30 June 2025 Drafted documentation for node

editor integration

Added to Section 4 of report

39

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2025-07-01.

[3] FOSSEE Project. Osdag website. Accessed: 2025-07-01.

40

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task Assignment
	Tasks Done

	Internship Task 1 Bolt Layout Generator for Steel Connections in Osdag
	 Problem Statement
	 Tasks Done
	Overview
	Methodology & Process Flow
	 of File Responsibilities

	 Python Code
	Common Components Across All Scripts
	Description of the Script
	Python Code

	 Documentation
	 Directory Structure
	 Program Start
	 Using the GUI Detailing Modules

	Internship Task 2: Visual Node Editor Integration
	4.1 Task 2: Problem Statement
	4.2 Task 2: Tasks Done
	4.3 Task 2: Documentation

	Conclusions
	5.1 Tasks Accomplished
	5.2 Skills Developed

	Appendix A: Internship Work Report
	Bibliography

