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Chapter 1

Introduction

In this report, I shall present my contributions made to the Free and Open Source Software
(FLOSS) community during the Semester Long Internship 2024. I worked online, in part time
mode starting from 1st March 2024 to 30th June 2024. Contributions were made using ‘R’, a
FLOSS language and environment for statistical computing and graphics. This internship was
organised by the FOSSEE Project based at IIT Bombay. The thrust area of the project is
promoting and creating open-source software equivalent to proprietary software. This project
is a part of the National Mission on Education through ICT funded by the Ministry of
Education, GoI. My contributions included the creation of an algorithm to digitize line plots,
& implementation of the algorithm in R and the creation of an R TBC.
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Chapter 2

Contribution to the TBC Project

As a part of the selection procedure for the FOSSEE Semester Long Internship, an applicant
is required to select a standard textbook related to Probability/Statistics etc., with at least 80
solved examples to submit a TBC proposal for the R TBC project. I was asked to complete a
book on time series and code not only the examples but also code the plots for the datasets
given in the book. My proposal got approved and during the fellowship period, I contributed
to the R TBC project by creating an R textbook companion for the below-mentioned
textbook:

Textbook name Author Edition
Introduction to time series and forecasting Peter J. Brockwell

Richard A. Davis
3rd

My submitted TBC shall be available for public use on the R TBC Completed Books
webpage upon approval.
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Chapter 3

Plotting time series data

About the book:
This book, “Introduction to time series and forecasting” is aimed at the reader who wishes to
gain a working knowledge of time series and forecasting methods. It contains a total of 11
chapters and 5 appendices. Starting with the introduction to time series, the book delves deep
into time series data and its analysis. Most examples in the book include graphs and several
calculations to understand the behaviour of time series data. Based on the datasets given in
the book, I have recreated all the plots which has helped me to understand the nuances of
time series data and its analysis.

Dataset link:
http://extras.springer.com

Example:
An example from Page 84 was recreated, the code and output of which are shown below.

oshorts<- read.csv("OSHORTS.TSM", header =FALSE)
colnames(oshorts)[1] <- "overshorts"
oshorts$days <- seq(1,nrow(oshorts))
# Figure 3-5
plot(oshorts$days,oshorts$overshorts, xlab = "Days", ylab = "Overshorts",

type = 'o', col = "blue")

abline(h=0)

# Figure 3-6
acf_result <- acf(oshorts$overshorts, plot = FALSE)
n <- length(oshorts)
bounds <- 1.96 * ((1 + 2 * acf_result$acf[2]^2)^(1/2)) / sqrt(n)
plot(acf_result, main = "Sample ACF with Bounds")

print(mean(oshorts$overshorts))

## [1] -4.035088

acvf<-acf(oshorts$overshorts, plot= FALSE, type = 'covariance')
print(acvf$acf[1])
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## [1] 3415.718

print(acvf$acf[2])

## [1] -1719.956

The plots are given below:

Time series of the overshorts.

Figure: Timeseries plots of the data

The sample ACF of the overshorts data, showing the given bounds

assuming an MA(1) model for the data.±1. 96𝑛0.5 − 1
2 (1 + 2ρ2(1))

0.5

Figure: Recreated ACF plot
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Chapter 4

Digitization

1. Introduction
Digitization is the process of converting information into a digital format that can be easily
stored and analysed. In the context of plots, digitization involves transforming graphical
representations of data, such as charts and graphs into digital data points. This process allows
for efficient data analysis to uncover meaningful insights. Digitizing plots is essential
because many plots are still only available as static images.

2. Digitization in MATLAB
Digitizing plots has become more accessible thanks to various available tools and software.
One of the popular options include MATLAB. MATLAB is renowned for its robust
mathematical and engineering capabilities. Extraction of datapoints can be performed using
available open-source software files. In the procedure demonstrated below, I have used
GRABIT Version 1.0.0.1 by Jiro Doke.

3. About GRABIT
GRABIT starts a GUI program for extracting data from an image file. It is capable of reading
in BMP, JPG, TIF, GIF, and PNG files (anything that is readable by IMREAD). Multiple data
sets can be extracted from a single image file, and the data is saved as an n-by-2 matrix
variable in the workspace. It can also be renamed and saved as a MAT file.

4. Procedure
To demonstrate the implementation, I first generated a line plot in R and saved it as an image.

Figure: Line plot stored as an image
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Next, Following steps were taken for digitizing the plot:

● The image file was loaded in the interface.

Figure: Loaded image in interface

● Calibrate axes dimensions. User will be prompted to select 4 points on the image.

Figure: Calibration of axes

● The datapoints were grabbed by clicking on points on the line. Right-click to delete a
point. Image can be zoomed during this stage.

Figure: Preview of recreated plot

9



● Multiple data sets will remain in memory so long as the GUI is open. Variables can be
renamed, saved to file, or edited in Array Editor.

● Shown below is a comparison of obtained and real data.

Figure: Digitized data Figure: Real data

5. Digitization procedure using R

The package digitize facilitates digitization in R. It requires user input for calibration as well
as mapping of datapoints. This might prove to be a handy tool for retrieving data points from
figures in old articles for which the raw data is not available.

● Step 1: A simple plot is generated and saved as an image. For comparison of results,
the same line plot is used for digitization in both R and the GRABIT tool in
MATLAB.

● Step 2: First the image is read using the ReadAndCal function. The lowest and
highest x and y values were selected.

● Step 3: To retrieve values for specific data points, simply each points of interest are
simple clicked. The function DigitData will mark each selected point with the
specified colour and save the corresponding raw x and y coordinates to the
data.points list.

● Step 4: Finally, raw x and y coordinates were converted to the original graph's scale
by calling the Calibrate function. The data.points list, the cal list containing the four
control points, and four numeric values representing the original points clicked on the
x and y axes, in the figure's original scale were specified for the function.
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Figure: R code snippet for digitization

Figure: Calibration of axes and datapoints

6. Results:
The following images show the comparison of the extracted data with the real data. It is
observed that neither the x nor the y values match with the real data.

Figure: Real data Figure: Digitized data in R Figure: Digitized data in MATLAB
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7. Challenges

● Errors in axis detection: Requires manually clicking on the plot to calibrate the axes.
Involves selecting control points, which can introduce errors if not accurately clicked.

● Manual data extraction: Data points must be clicked on individually for extraction.
This process is time-consuming and prone to inaccuracies.

● Limited tick marks: If the plot has few tick marks, estimating the exact values
becomes challenging. It increases the probability of inaccuracies due to guessing.

● Lack of reproducibility: Manually digitized data can vary between different users.
Lack of standardization can affect the reproducibility of results.

● Limited time efficiency: Large datasets can be particularly cumbersome to handle
manually. Also causes visual fatigue to users.

8. Conclusion

Digitization of plots is a crucial process for transforming graphical data into a digital format
for enhanced analysis and reproducibility. As shown in the results, manual digitization
presents challenges such as human error, time consumption, and limited accuracy. In the next
chapter, I will explore automating the data extraction process, addressing the need for
efficiency and accuracy in digitizing plots.
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Chapter 5

Extraction of data from line plots

1. Introduction
In data analysis and research, charts and graphs are essential for sharing information.
However, it's often hard to get the data these visuals are representing. This problem comes up
frequently when analyzing government data and stock information which are often, only
available as images. Therefore, I was given the task of extracting data from the image of a
line plot using R programming language. To address this challenge, it was suggested to
analyze plots depicting stock prices versus dates.

My project, Plot Digitization involves identifying the key components of the plot and
accurately mapping the pixel data back to the original coordinates. I have used contour
detection, optical character recognition and regression for this project. The process involved
conducting an exhaustive literature survey, the creation of an algorithm to solve the problem,
and implementing it in the R programming language.

2. Problem statement
The project aims to address the challenge of extracting data and recreating a line plot from an
image of a stock prices plot for AAPL (Apple Inc.) over the past month. By digitizing the
plot from its image, we seek to extract data from the image of a line plot. This solution is
based on image processing and regression techniques while ensuring precision in recreating
the line plot from its image.

3. Literature survey
I performed an exhaustive literature survey to find any existing solutions for plot digitization.
Prior research has explored various approaches to automate the extraction of data from
different types of charts, focusing on techniques such as image processing, deep learning, and
optical character recognition (OCR). I searched for research papers, various R packages for
each step of the process, and various published notebooks and publications on plot
digitization. Following is a list containing all search results:
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3.1 Research papers and articles

Title Authors Link Description
Scatteract: Automated
Extraction of Data
from Scatter Plots

Mathieu Cliché,
David Rosenberg,
Dhruv Madeka,
Connie Yee.

DOI:10.1007/978
-3-319-71249-9_9

Illustrates an algorithm that
leverages deep learning techniques
and OCR techniques to retrieve
chart coordinates. Lastly it uses
robust regression to retrieve real
values.

LINEEX: Data
Extraction from
Scientific Line Charts

Shivasankaran V P,
Muhammad Yusuf
Hassan, Mayank
Singh

DOI:10.1109/WA
CV56688.2023.0
0615

Involves creation of a large line
chart dataset, detection of various
chart elements by detection
transformer and detection of text by
OCR. Employs OKS for keypoint
extraction.

Automatic Extraction
of Data from 2-D Plots
in Documents

Xiaonan Lu, J.Z.
Wang,
Prasenjit Mitra, C.L.
Giles

DOI:10.1109/ICD
AR.2007.437870
1

A binarized image is taken as an
input. Axis detection is performed
using a customised hough transform.
Next, an image thinning algorithm is
applied and the curves are identified.

Automatic
Identification and Data
Extraction
from2-Dimensional
Plots in Digital
Documents

William J. Brouwer,
Saurabh Kataria,
Sujatha Das, Prasenjit
Mitra,
C. L Giles

https://www.resea
rchgate.net/public
ation/220486631_
Automatic_Identi
fication_and_Dat
a_Extraction_fro
m_2-Dimensional
_Plots_in_Digital
_Documents

A binarized image is taken as an
input. Axis detection is performed
using a customised hough transform.
Next, an image thinning algorithm is
applied and the curves are identified.

Automatic Extraction
of Data Points and Text
Blocks from
2-Dimensional Plots in
Digital Documents

Saurabh Kataria,
William Browuer,
Prasenjit Mitra, C. L
Giles

https://www.resea
rchgate.net/public
ation/221605706_
Automatic_Extrac
tion_of_Data_Poi
nts_and_Text_Blo
cks_from_2-Dime
nsional_Plots_in_
Digital_Documen
ts

A binarized image is taken as an
input. Axis and plot region is
segregated using SVM algorithm.
Ticks are detected using OCR while
simulated annealing is applied for
datapoints disambiguation.

Segregating and
extracting overlapping
data points in
two-dimensional plots

William J. Brouwer,
Saurabh Kataria,
Sujatha Das, Prasenjit
Mitra,
C. L Giles

DOI:10.1145/137
8889.1378936
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Line Graphics
Digitization: A Step
Towards Full
Automation

Omar Moured,
Jiaming Zhang, Alina
Roitberg,
Thorsten Schwarz,
Rainer Stiefelhagen

DOI:10.1007/978
-3-031-41734-4_2
7

Creation of a line graph dataset of
mathematical graphics and supports
both semantic segmentation and
object detection. Segmentation tasks
are performed in pytorch.

Auto-Digitizer for Fast
Graph-to-Data
Conversion

Deepti Sanjay
Mahajan, Sarah Pao
Radzihovsky,
Ching-Hua (Fiona)
Wang

https://web.stanfo
rd.edu/class/ee36
8/Project_Winter_
1718/Reports/Ma
hajan_Radzihovs
ky_Wang.pdf

Sobel filter is applied to images
dataset for separation of axis and
plot region. Label recognition is
performed using OCR and data is
extrapolated to the axis ranges.

Program for Automatic
Numerical Conversion
of a Line Graph

Michiko Yoshitake,
Takashi Kono, Takuya
Kadohira

https://doi.org/10.
2477/jccj.2020-00
02

OCR performed on an image
containing many plots. Tensorflow
and Keras used for deep learning on
the backend. DBSCAN implemented
to separate each plot image.

3.2 Available tools for digitization

Sl no. Title Link
1. WebPlotDigitizer automeris.io: AI assisted data extraction from charts using

WebPlotDigitizer

2. PlotDigitizer PlotDigitizer — Extract Data from Graph Image Online

3. GraphReader graphreader.com - Online tool for reading graph image
values and save as CSV / JSON

4. Engauge Digitizer Engauge Digitizer (markummitchell.github.io)

5. DigitizeIt DigitizeIt - Plot Digitizer Software. Digitize graphs, charts
and math data.
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4. Algorithm:

The proposed algorithm for extraction of data from line plots consists of three major parts.
Image processing is the initial part of this algorithm. The main objective here, is to isolate the
pixels of the image denoting the line plot from the other pixels that form the image of the
plot. The implementation of this part may differ for some images based on specific
requirements. Next, the optical character recognition detects the text in the image. The image
of a line plot has labels depicting the values on each axis. The pixels values for the same, can
be detected using bounding boxes. Finally, a model is trained to understand the relationship
between pixel values and real values, and using regression, the real values are predicted. Each
step of the algorithm is presented in detail as follows:

4.1 Plot generation

For generating a line plot, stock prices data for Apple Inc. for June 2024 has been used. This
line plot will be recreated, and data will be extracted from it.

● Step 1: Retrieve stock data for last month. First, we obtain the stock data available in
open source. Then, we filter out the stock prices and dates from the beginning of the
previous month till the current date.

● Step 2: Plot the stock prices versus date data.
● Step 3: Save the plot as an image. This image will be used to extract data and

recreation of the plot.

4.2 Image processing

The image of any plot is considered to have three basic parts: the x axis, the y axis, and
the line plot area. Several image processing techniques can be used to segregate these parts
of the plot. In the context of plot digitization, the main objective of image processing is to
extract the pixel values depicting the line plot.

● Step 1: Load the image. Images can be read using different R packages.
● Step 2: Image processing for line plot isolation.

Various functions can be used to isolate the line plot from the rest of the image but the
techniques may vary for different images. Here, we are using smooth unsupervised
contour detection to detect the pixels denoting the line plot.

● Step 3: Isolation of axes in the image. This step ensures accurate optical character
recognition, an essential process further in the algorithm. Image processing
techniques like image composition can be used to isolate the axes in images.
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4.2.1 Contour detection on the image

Contour detection is a popular technique in computer vision useful in identification and
segmentation on an image. Contours represent the boundary or outline of an object,
consisting of pixels along the object’s boundary. Contour detection is utilized for the
segregation of the pixel values of the line plot from the rest of the image.

● Step 1: Convert image to the required format. There are different packages in R for
contour detection. So, we must read the image in required format to use the contour
detector functions.

● Step 2: Detect and plot the contourlines.
● Step 3: Filter out those contourlines which represent the line plot.

4.3 Optical Character Recognition for tick detection

Optical Character Recognition (OCR) is a technology used to convert different types of
documents into editable and searchable data. Tesseract is one of the most popular
open-source OCR engines, developed by Google. It supports multiple languages and provides
highly accurate text recognition. OCR was used to detect the ticks and their positions on
the plot.

● Step 1: Apply OCR on the image. I have used the English OCR engine of tesseract to
extract the text data in the image.

● Step 2: Extract the recognized tick labels/values. I have used regular expressions to
extract each tick value for both the axes.

4.4 Bounding boxes calculation

Bounding boxes are imaginary rectangles that enclose key objects within an image, defining
their boundaries. When an OCR system recognizes text, it provides both the recognized
words and their position in pixel values. Each detected word or text block is enclosed by a
bounding box, allowing precise localization.

● Step 1: Y coordinates calculation. The mean of the bounding box limits are
considered to denote the pixel values for the tick positions in the Y axis.

● Step 2: X coordinates calculation. Similarly, we can extract the position of X tick
values in pixels. Since, X axis denotes the dates, I have converted it into numeric
values for further process.

17



4.5 Regression and recreation of plot

Regression analysis is a statistical method used to model and analyze the relationships
between a dependent variable and one or more independent variables. In plot recreation,
overfitting ensures that the recreated plot closely adheres to the intricate details of the
original data.

● Step 1: Apply a linear regression model based on tick pixel values versus tick real
values. This models the relationship between tick pixel values and tick real values.

● Step 2: Predict x values and y values for the pixels data denoting the line plot. Due to
the small training sample size and the large number of predictions, the linear model
(lm) tends to overfit, thus ensuring accuracy in plot recreation

● Step 3: Recreate the plot with the predicted values.
● Step 4: Comparison of predicted prices with real prices.
● Step 5: Update the predictions due to the discrete nature of data in stock price dates.

5. Implementation in R:

5.1 Workflow

Figure: Proposed algorithm
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5.2 Packages used

● imager: For image processing tasks, such as edge detection and segmentation.
● magick: For advanced image manipulation and transformations.
● tesseract: For optical character recognition (OCR) to extract textual data from images.
● dplyr: For data analysis and manipulation, facilitating efficient data processing

workflows.
● stringr: For string operations and data cleaning.
● ggplot2: For visualizing the digitized data, enabling the creation of accurate and

aesthetically pleasing plots.
● quantmod: For stock data analysis, providing tools to model and analyze the stock

prices of AAPL.
● tesseract: For optical character recognition to get the precise pixel value of the ticks.
● image.ContourDetector: For detection of contours on the image.
● Lubridate: For data manipulation and analysis.

5.3 Procedure

5.3.1 Plot generation

● Step 1: Retrieve stock data for last month

a) A variable ticker is defined with the value "AAPL", which is the ticker symbol
for Apple Inc. Ticker symbols are unique identifiers for traded stocks.

b) The getSymbols function from the quantmod package is used to download the
stock data for the specified ticker symbol. By default, this function retrieves
historical stock data from Yahoo Finance.

c) To extract prices and dates from the stock data of Apple Inc., I utilized the
following:

I. get(ticker)$AAPL.Adjusted accesses the adjusted closing prices from
the retrieved data. Closing prices are adjusted for actions like dividends
and splits.

II. data.frame(Date = ..., Price = ...) creates a data frame with two columns:
Date and Price.

d) Here are the functions and methods used to retrieve the stock data for the previous
month:
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I. format(as.Date(current_date), "%Y-%m-01"): Converts the
current_date to a string representing the first day of the current month in
the format "YYYY-MM-01".

II. Then, 31 days are subtracted from the first day of the current month to get
the variable last_month_start.

III. stock_data_last_month filters out and stores that part of stock_data
which is within the current_date and the last_month_start.

● Step 2: Plot the stock data and save it as an image.

a) The stock data was plotted using the ggplot function from ggplot2 package
and the theme was set to theme_classic.

b) This plot was saved using the ggsave() function.

● R Code implementation for Plot generation:

# 1. Plot generation

# Step 1: Retrieve stock data for last month
# Step 1(a) Name of the stock
ticker <- "AAPL"
# Step 1(b) Retrieving the stock data
getSymbols(ticker)

# Step 1(c) Stock data to dataframe
stock_data <- data.frame(Date = index(get(ticker)), Price = as.numeric(get
(ticker)$AAPL.Adjusted))
current_date <- Sys.Date()
# Step 1(d) Stock data for the previous month
last_month_start <- as.Date(format(as.Date(current_date), "%Y-%m-01")) -30
stock_data_last_month <- stock_data[stock_data$Date >= last_month_start &
stock_data$Date <= current_date,]

# Step 2: Plot the stock data and save as an image.
# Step 2(a) Plotting stock prices versus dates

real_plot<-ggplot(stock_data_last_month, aes(x = Date, y = Price)) +
geom_line() +
theme_classic()

print(real_plot)
# Step 2(b) Saving the plot as an image
ggsave("stock_plot.jpeg",real_plot)
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Figure: Stock prices plot

5.3.2 Contour detection on the image

● Step 1: Loading the image

a) Image is loaded using image_read function in magick.

b) Image data is shown below

● Step 2: Converting image to required format

a) We are using the package image.ContourDetector which uses unsupervised
smooth contour detection.

b) It accepts the image formats in only “gray” and “bitmap” channels. Thus,
image_data function is used and channel is set to “grey”.

c) The data is stored in variable img_data which is a matrix. The following code
is adapted from the CRAN image.contourdetection documentation.
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Figure: variable img_data

● Step 3: Detect and plot the detected contour lines.

a) The function image_contour_detector is used to detect the contour lines.

I. Data is stored in the variable contourlines.
II. mat is the matrix of the image pixel values in the 0-255 range.

III. Q is numeric value with the pixel quantization step. Lower Q leads to
more accuracy in detection but higher complexity.

b) The contourlines data is shown below:

Figure: Contourlines data

I. contourlines is a list with 2 integer arrays namely curves and
contourpoints and a dataframe called data with 3 columns(x, y,
curve).

II. The curves array contains the number of curves detected while the
contourpoints array detects the number of contourpoints detected.

III. The data that is of our interest here is contourlines$data. Here x and y
columns denote the pixel coordinates and curve denotes the particular
contour detected.

c) Our objective is to find the contour points pertaining to the line plot so that we
can digitize the plot. Therefore, visualization of the contourlines$data by
color is necessary so that each detected curve is represented in a different
color.

Figure: Contour lines in each detected curve
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d) Next, the suitable range for curves is visualized for identification of the curve
denoting the line plot.

Figure: Contour lines denoting line plot

● Step 4: Filter out and plot the line data

a) Filter out the contours of the line plot using filter function.

b) Plot the filtered line data.

Figure: Line plot in pixel values
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● R implementation for Contour detection:

# 2. Contour detection

# Step 1: Loading the image

# Step 1(a): Image loaded using magick package
img <- image_read("stock_plot.jpeg")

# Step 1(b): Print image
print(img)

# Step 2: Convert image to required format

# Step 2(a): From image to grayscale (unreadable element)
img_grey <- image_data(img, channels = "gray")

# Step 2(b): Conversion to integer will convert it to colour:
# values for each pixel: 0 for black 255 for white
img_grey_t <- as.integer(mat_gray, transpose = TRUE)

# Dropping the colour channel as it is not required for greyscale
img_gray_t <- drop(img_data)

# Step 3: Detect and plot the contourlines

# Step 3(a): Detect the contourlines
contourlines <- image_contour_detector(img_grey_t, Q=0.001)

# Step 3(c): Plot the contourlines data by each curve
ggplot(contourlines$data, aes(x = x, y = y, color = factor(curve))) +
geom_point() +
geom_line() +
labs(title = "Contour Lines", x = "X Pixel Coordinate",

y = "Y Pixel Coordinate") +
theme_minimal()

# Step 3(d): Subset the data to filter out the contourline needed
ggplot(subset(contourlines$data, curve = 50:60),
aes(x = x, y = y, color = factor(curve))) +
geom_point() +
geom_line() +
labs(title = "Contour Lines", x = "X Pixel Coordinate",

y = "Y Pixel Coordinate") +
theme_minimal()

# Step 4: Filter out and plot the line data.

# Step 4(a): Filter out the contours of the line plot
line_data <- contourlines$data %>% filter(curve == 53)
# Step 4(b): Plot the line data
plot(line_data$x, line_data$y, type ='l')
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5.3.3 Optical character recognition for tick detection
● Step 1: Extract data from image using OCR:

a) Next, we extract data from the image as shown below.

I. “ocr” function performs OCR on text using the Tesseract engine for
English.

II. “str_split” splits the OCR result into lines and stores them in
“ocr_results” variable.

b) Shown below, is the data extracted by OCR:

Figure: Data extracted by OCR

Figure: Bounding boxes

● Step 2: Extract the recognized tick values

a) str_extract_all function extracts all the string values in ocr_results which
was obtained by applying OCR engine previously.

b) Regular expression \\b\\d{3}\\b is used for tick values in y axis and
[A-Za-z]{3} \\d{2} is used for the tick values in x axis.

I. \\b denotes word boundary.
II. \\d denotes a digit and d{3} means we are extracting 3 digits.

III. [A-Za-z] denotes all the alphabet characters.

c) unlist function is used to convert the recognized and detected tick values to a
vector. The following are the results for y tick values and x tick values,
respectively.

● R implementation for OCR:

# 4. OCR for tick detection

# Step 1: Apply OCR and extract data from the image
# Step 1(a) Extract data using OCR
ocr_results <- ocr(img, engine = tesseract("eng"))%>% str_split("\n")
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# Step 2: Extract the recognized tick values
y_labels <- unlist(str_extract_all(ocr_results, "\\b\\d{3}\\b"))
x_labels <- unlist(str_extract_all(ocr_results, "[A-Za-z]{3} \\d{2}"))

5.3.4 Bounding boxes calculation

● Step 1: Extracted data from OCR in a dataframe

Figure: OCR data

I. The ocr_info dataframe has 3 columns: word, confidence and bbox.
II. word denotes the recognized characters in the image.

III. confidence denotes the confidence level with which the OCR engine
detects the text.

IV. bbox defines the positions of the ticks. For example, 76, 265, 134, 291
are the bounding dimensions, where the first and third elements denote
the pixel value range in x axis and the other elements denote the pixel
value range in y axis.

● Step 2: Y coordinates calculation

a) Find the bounding box dimensions:

I. as.character(ocr_info$bbox) extracts the bbox column from the
ocr_info dataframe and converts it to a character vector.

II. strsplit(..., ",") splits each string in the bbox column by the comma
delimiter, resulting in a list of vectors while do.call(rbind, …)
combines these vectors into a dataframe by row-binding.

III. seq_len(...) creates a sequence from 1 to length of the dataframe and
paste("bbox",sep = "_") constructs the column names by
concatenating bbox, the column number, and an underscore.

IV. bounding_coord is finally obtained by column binding the words and
their bounding box dimensions.

b) Therefore, bbox_1 and bbox_3 store the range of pixel values in x direction
and bbox_2 and bbox_4 store the range of pixel values in the y direction.

c) The resulting bounding_coord, formed is presented below.

26



Figure: Bounding boxes coordinates

d) This dataframe is then filtered such that we get the data only for the y axis
ticks.

e) It is estimated that the mean of the maximum and minimum bounding box
pixel values represents the real tick in pixel values.

f) After this calculation the extracted tick pixel values are stored in a column
named Y in another dataframe y_coord while the real tick values detected in
OCR are stored in a column named Label. y_coord is demonstrated below.

● Step 3: X coordinates calculation

a) Filter the OCR results of the x-labels similar to the extraction of y-labels.

b) Calculation of x-coordinates of the label ticks. Compute the X-coordinates of
labels by averaging the left and right bounding box coordinates in an alternate
sequence. This is done by iteration using a for loop.

c) Convert the dates into numeric values by as.Date function and the
Label_Value is found out by creating a sequence upto the difference between
the detected dates. This is stored in the variable, x_coord.

27



Figure: Y ticks pixel and real values Figure: X ticks real and pixel values

● R implementation for bounding box calculations:

# 4. Bounding Box Calculation

# Step 1: Extract the bounding box dimensions
ocr_info <- ocr_data(img, engine = tesseract("eng"))%>% str_split("\n")

# Step 2: Y coordinates calculation
# Step 2(a): Find the bounding box dimensions
bounding_coord <-data.frame(do.call(rbind,
strsplit(as.character(ocr_info$bbox), ",")))
colnames(bounding_coord) <- paste("bbox",
seq_len(ncol(bounding_coord)),sep="_")
bounding_coord <- apply(bounding_coord, 2, as.numeric)
bounding_coord <- cbind(ocr_info[,"word"], bounding_coord)

# Step 2(d): Filtering the words corresponding to Y-labels
y_label_boun_box<-bounding_coord
%>%filter(bounding_coord$word)%in%y_labels)

# Step 2(f): Calibrating the Y-coordinates
img_height <- as.numeric(image_info(img)[1, 3])
y_label_boun_box[, c(3, 5)] <- img_height - y_label_boun_box[, c(3, 5)]
y_coord <- data.frame(rowMeans(y_label_boun_box[, c(3, 5)]))
colnames(y_coord) <- "Y"
y_coord$Labels <-(y_labels)

# Step 3: X coordinates calculation
# Step 3(a): Filter the OCR result for x-labels
x_label_boun_box <- bounding_coord %>% filter(bounding_coord$word) %in%
unlist(str_split(x_labels, ," ")))

# Step 3(b): Calculation of x-coordinates of the label ticks
x_coord<- c()
for(i in seq(1,nrow(x_label_boun_box),by=2)){
left_x <- as.numeric(x_label_boun_box [i,"bbox_1"])
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right_x <- as.numeric(x_label_boun_box [i+1,"bbox_3"])
x_coord <- append(x_coord,((left_x + right_x)/2))}

x_coord <- data.frame(X = x_coord, Labels = x_labels)

# Step 3(c): Conversion of dates to numeric values
date_values <- as.Date(x_values, format = "%b %d")
x_coord$Label_Value <- seq(0, as.numeric(difftime(max(date_values),
min(date_values), units = "days")), length.out = length(x_labels))

5.3.5 Regression and recreation of plot

● Step 1: Fit a model to learn from the contour values and given labels:
lm function was used to create a linear model based on the detected tick values and
their positions in pixel values for both the axes.

● Step 2: Predict x values and y values for the contourlines data:
Values in x and y axis were predicted using the predict function on the line_data
containing the contourlines data for the line plot.

● Step 3: Recreate the plot:
The plot function was used to recreate the plot as shown below. The x axis denotes
the number of days starting from the start of the previous month.

● Step 4: Convert continuous x values to discrete corresponding to dates:

I. x_discrete_convert function finds the Y value in predicted_data closest to a
given X value (day).

II. x_close subsets predicted_data to rows where X rounded to the nearest
integer equals day.

III. x_close$diff calculates the absolute difference between X and day and then
the row with the smallest difference is selected

● Step 5: Final recreated plot for the discrete x values:

I. x_updated creates a sequence of X values from 0 to the maximum of
x_predicted, rounded to the nearest integer.

II. y_updated applies x_discrete_convert function to each value in x_updated
to get the corresponding Y values.

III. predicted_data is a dataframe that stores the updated X and Y values and this
data is the plotted.

● R implementation for regression and recreation of plot:

# 5. Regression and recreation of plot
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# Step 1: Fit a model to learn from the contour values and given labels
ymodel <- lm(Value ~ Y, data = y_coord)
xmodel <- lm(Value ~ X, data = x_coord)

# Step 2: Predict the label values for all the contour values
y_predicted <-predict(ymodel, newdata = data.frame(Y=line_data$y))
x_predicted <- predict(xmodel, newdata = data.frame(X = line_data$x))

# Step 3: Plot the recreated data
plot(x_predicted, y_predicted, type = 'l')
predicted_data <- data.frame (X= x_predicted,Y= y_predicted)

# Step 4: Convert continuous x values to discrete corresponding to dates
x_discrete_convert <- function(day){
# Find X-value rounded off to integer and find their differences
x_close <- subset(predicted_data, round(X) == day)
x_close$diff <- abs(x_close$X - day) # Identify closest Y value
x_value <- x_close[x_close$diff == min(x_close$diff),]
return(x_value$Y)
}

# Step 5: Final predicted plot
x_updated <- 0:round(max(x_predicted))
y_updated <- sapply(x_updated, x_discrete_convert)
predicted_data <- data.frame(X= x_updated, Y = y_updated)
plot(predicted_data, type = 'l')

Figure : Recreated plot
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5.3.6 Comparison of original and recreated plot:

● Step 1: Conversion of dates in original data to numbers for comparison:
Treating each date as a unique day, x_scaled is created for each date. A function
converting date into numeric by calculating the number of days is used. This function
is applied to all dates in stock prices data to create the x_scaled array.

● Step 2: Filtering the prediction data to predict the price for each date:
The predicted_data dataframe is filtered such that the x values in predicted_data
match with x_scaled array. This provides us with the relevant data for dates and
prices which is then used to compare the real stock prices with the predicted stock
prices.

● Step 3: Comparison of original and recreated plots:
The ggplot function is used to visualise the recreated and the original plots.

● Step 4: Mean squared error and mean percentage difference is calculated.

# Step 1: Realtime conversion of the dates to numbers

x_dat <- as.Date(stock_data_last_month$Date)
x_scaled <- sapply(x_dat, function(x)
{as.numeric(difftime(x, x_dat[1],units = "days"))})

# Step 2: Filtering the prediction data to predict the price for each date
price_predict <- predicted_data[predicted_data$X %in% x_scaled, "Y"]

# Step 3: Comparison of original and recreated plots.
ggplot(stock_data_last_month, aes(x = Date)) +
geom_line(aes(y = Price, color = "Real"),size=2) +
geom_line(aes(y = price_predict, color = "Predicted"),size=2) +
labs(title = "Two Line Plots on the Same Graph",

x = "X-axis",
y = "Y-axis",
color = "Legend") +

theme_minimal()

stock_data_last_month$predicted_prices <- price_predict
stock_data_last_month$percentage_diff <-
((stock_data_last_month$Price - stock_data_last_month$predicted_price)/
stock_data_last_month$Price) * 100
mean_percentage_diff<-mean(stock_data_last_month$percentage_diff,
na.rm = TRUE)
print(mean_percentage_diff)
## [1] -0.08093236

mse<-mean((stock_data_last_month$Price –
stock_data_last_month$predicted_price)^2)
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print(mse)
## [1] 0.04220163

6. Results

The discussed algorithm is a comprehensive approach to plot digitization and is applicable to
various images of different size and formats. Consequently, it is also important that the
implementation of this algorithm may vary for specific charts.
The implementation of this algorithm in R language demonstrates the versatility of the
algorithm. We have obtained an MSE of 0.042 and a mean percentage difference of 0.08%
between the real stock prices and the predicted stock prices.

Comparison between the real data and the predicted data for stock prices versus dates:

Figure: Line plots for real and predicted prices
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Table: Stock prices, predicted prices and percentage difference on various dates

Chapter 6

Conclusion 

The projects completed during the FOSSEE Semester Long fellowship contributed
towards the increment in usability and awareness of open-source software, i.e., R.
Completed R TBCs are made available to the general public to be used as a companion
to the associated standard textbooks in mathematics and sciences. The plot digitization
project demonstrates R’s capabilities in transforming visual data into a digital format
that can be analyzed and interpreted quantitatively. This process aids users in extracting
data from graphical representations.

Overall, it was a great learning experience. I gained new skills and knowledge. I also
learned the different facets of working within an organization. In a nutshell, the
fellowship taught me work ethics, commitment, and the importance of contributing back
to society, besides technical skills.
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