

Summer Fellowship Report

Web

Amity University Uttar Pradesh

Prof.Kannan M. Moudgalya

Chemical Engineering Department

Summer Fellowship Report
On

Web-Development/DevOps

 Submitted by

Akshat Pande
Amity University Uttar Pradesh

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Mentors

Mr. Thomas Stephen Lee
Mr. Rohan Mhatre

June 20, 2020

Summer Fellowship Report

Acknowledgment

The journey of FOSSEE Summer Fellowship was one of a kind experience and I
consider myself privileged to be a part of such a prestigious program. The efficient
workflow of the Internship in an online manner under such pandemic conditions was
really appreciable. Also, It gave me a chance to get connected with some Industry
professionals and mentors from the organization which was a great assistance for me
throughout the fellowship, not only helping me if I am stuck but also encouraged to
research better alternatives of a solution to carry out an intuitive learning process.

I am grateful to express gratitude and special thanks to Prof. Kannan M Moudgalya,
head of FOSSEE Team, for giving us an opportunity to be a part of the project. Also, the
successful completion and valuable learnings while completing our task would not have
been made possible without my mentors, Mr. Thomas Stephen Lee and Mr. Rohan
Mhatre who made this process more fulfilling, rewarding, and fun along with maintaining
a perfect balance between work and breaks.

I have always thought of this program as a source of learning and of course a milestone
in my career. The technologies used in the program duration were really interesting to
explore and added a valuable skill set to my working methodology and projects. I will for
sure be consistent with them in the future and wish to connect for a similar opportunity
with the organization.

Content

1. Getting Started with Grafana

1.1 Introduction to Grafana 1

1.2 Installation and Setup 2

1.3 Overview of basic features 5

2. Components of Grafana

2.1 Supported Data Sources 7
2.2 Dashboard and Panels 9
2.3 Users and Teams 12
2.4 Explore 13
2.5 Grafana HTTP API 13

3. Contributions

3.1 Tasks and Solutions 14

3.2 Side-Tasks in the process 19

3.3 Problems Faced 19

4. DevOps

4.1 Introduction to concepts 20

4.2 Category of Tools available 22

5. Containerization

5.1 Importance of containers 24

5.2 Container Engines 25

5.3 Implementation of Docker 26

6. CI/CD

6.1 Workflow and Advantages 29

6.2 Travis CI 30

 6.2.1 Implementing Travis on Yaksh App 31

 6.2.2 Implementing Travis on a Node app 31

7. Orchestration

7.1 Introduction to Kubernetes 32
7.2 Components Involved 33
7.3 Implementing Kubernetes on Yaksh 34

8. Staytus

7.1 Overview 36
7.2 Implementation 37

9. AWDash

7.1 Overview 38
7.2 Implementation 38

8. References 39

1

Getting Started with Grafana

Introduction to Grafana

We are aware of the importance of analysis and visualization of data in the present
scenario where data science and data scientists are one of the most discussed
professions and work roles, respectively. The study of data is extensive ranging from
various sources to generate patterns and make the technology smart with the help of
such methods.

Grafana is one of the Open Source solutions for monitoring and analyzing data with the
help of an interactive user interface which is not only easy to use but also implements
team structure as an accessibility feature which is a need of each workplace. The
software has the capability to deliver on-premises service and connects to almost all the
major data sources available around us. It focuses on studying data at various time
intervals also known as the time-series analytics which proves to be a rational concept
for monitoring system statistics, errors, etc. Grafana extracts metrics and presents them
in dashboards with the help of queries and a vast range of visualizations available for
the representation of data.

Development as conversed ranges from third-party plug-ins for non listed data sources
or adding new features to a dashboard library with several comprehensive dashboards
pre-built and import-ready for their use with data source requirements and import details
specified on the platform.

The software is free to use and modify as the tag suggests Open Source but it does
offer two paid solutions for the end-users including Grafana Enterprise and Grafana
Cloud. Here, the enterprise edition provides you with advanced plug-ins and extended
whereas the Cloud refers to a compute instance made available to you with Graphite,
Prometheus and Loki pre-installed as your head-start to start with monitoring and
analysis.

2

Installation and Setup

The installation of Grafana on CentOS 8 requires:

Grafana-Server which serves the main application

● Disable SElinux by editing the file /etc/sysconfig/selinux

- Change SELINUX=enforcing to SELINUX=disabled
- Reboot the system using `$ sudo reboot`

● Create a repo file at /etc/yum/repos.d/grafana.repo and paste the following

[grafana]
name=grafana
baseurl=https://packages.grafana.com/oss/rpm
repo_gpgcheck=1
enabled=1
gpgcheck=1
gpgkey=https://packages.grafana.com/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

● Install it with
$ sudo dnf install grafana

● Start and Enable the service

- $ sudo systemctl start grafana
- $ sudo systemctl enable grafana

● Opening required port on firewall (3000 in our case)

- $ firewall-cmd --zone=public --add-port=3000/tcp --permanent
- $ firewall-cmd –reload

3

Adding SSL to domain

● Install Certbot
$ sudo wget https://dl.eff.org/certbot-auto
$ sudo mv certbot-auto /usr/local/bin/certbot-auto
$ sudo chown root /usr/local/bin/certbot-auto
$ sudo chmod 0755 /usr/local/bin/certbot-auto

● Stop Nginx service if running with
$ sudo service nginx stop

● Execute the command below to get certificates as well as automatically change the
Nginx config
$ sudo certonly -d <domain_name>

Nginx Web Server to reverse proxy to Grafana Server

● Install Nginx
- $ sudo dnf install nginx
- $ sudo systemctl enable nginx
- $ sudo systemctl start nginx
- $ sudo firewall-cmd --permanent --add-service=http
- $ sudo firewall-cmd --reload

● Test the server
- $ curl localhost
- Or Visit localhost in a browser

● Configuration for nginx
- Erase everything in ‘/etc/nginx/conf.d/default.conf’ and place a ‘#’
- Add config below to ‘/etc/nginx/conf.d/<domain_name>.conf

4

server {
 listen 10.0.2.15:80 ;
 server_name akshat.fosseeapps.in;

 return 301 https://akshat.fosseeapps.in$request_uri;

 access_log /var/log/nginx/akshat.fosseeapps.in.access.log main;
 error_log /var/log/nginx/akshat.fosseeapps.in.error.log;
}

server {
 listen 10.0.2.15:443 ssl;
 server_name akshat.fosseeapps.in;

 #ssl on;
 ssl_certificate /etc/letsencrypt/live/akshat.fosseeapps.in/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/akshat.fosseeapps.in/privkey.pem;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_ciphers <add cipher>;
 ssl_prefer_server_ciphers on;
 ssl_dhparam /etc/ssl/certs/dhparam.pem;

 access_log /var/log/nginx/akshat.fosseeapps.in.ssl.access.log main;
 error_log /var/log/nginx/akshat.fosseeapps.in.ssl.error.log;

 client_max_body_size 0; # disable any limits to avoid HTTP 413 for large
 image uploads

 location / {
 proxy_pass http://localhost:3000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Server $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_read_timeout 5m;
 }
}

5

● Start Nginx again with the command
- $ sudo service nginx start

- In case an error of dhparam.pem file doesn't exist is observed, create one with

the command
 $ sudo openssl dhparam -out /etc/nginx/ssl/dhparam.pem 2048

- Check the HTTP and https port on your web browser if they’re working correctly
else debug

Enable SELinux for Grafana

● Create Configurations

- Edit Selinux `/etc/selinux/config`

Set: SELINUX=enforcing
 - $ sudo reboot
 - $ sudo dnf install policycoreutils-python-utils
 - $ grep den /var/log/audit/audit.log | audit2allow -M mygrafana

● Restart Grafana
- $ sudo service restart grafana

6

Overview of Basic Features

- Data Sources

These refer to the software, databases, and other cloud-based services that
collect and monitor data from some specific resources in their region. The data
may include system metrics, logs, errors, database metrics, etc. and extracting
them from a particular tool made for the purpose is the best use case for
maximized flexibility and efficiency as these tools may provide a similar querying
procedure or technology-based features built into them. Later these metrics are
in turn fetched from Grafana and visualized in a more elaborated manner. This
feature is the main module of the software as no matter which tool you use under
the hood to keep data intact, you will usually have an option to pull the data in
Grafana which makes it act like a wrapper over metrics and log collection tools.

- Dashboards
It is a collection of panels representing versatile information with the help of data
pulled from data sources. The dashboards module provides users an option to
either import a pre-made dashboard using an ID or make a new one, customized
according to the needs of the organization. Each entity has its own name, version
number which indeed maintains version control and settings for the same.

- Panels
Moving down the branches in the dashboard hierarchy we come across a
number of panels which as the name suggests are resizable blocks of
visualizations that together build up to make a dashboard. Each panel is capable
of being converted to a row and also consists of an add visualization button
which opens a new dimension to add queries, play with visualizations, and a lot
more discussed in later sections.

- Teams
Working in teams is a basic part of workplace culture where generally each time
is specified particular roles and hardly do they cross operate on confidential
assets unless not necessary. To implement the same as an accessibility control
in Grafana a Teams module is provided to the admin where he can create groups
termed as teams and add pre-existing users to the same, not only this but control
their access levels out of a list of roles granted to each team. This helps in
providing a filtered and secure vision to viewers which ease their work.

7

- Query & Visualization
Once the data source is selected, a dashboard in its place and a panel is created
then queries play an eminent role in fetching the required data from the complete
set. These queries may vary in their schema based on the data source we are
using, for example- SQL Queries for MySql and Lucene Queries for
ElasticSearch, etc. They work in the same manner as executing them in their
default source environment, it’s just an additional wrapper of measurement and
limits setting along with a set of visualization is provided which makes each
analysis accurate and filtered.

- Use Cases Involved
If we discuss how the implementation of features conversed above can bring us
a one-screen solution we can think of a use case where we need system metrics,
which can be fetched using Prometheus with the help of its exporters, namely
node-exporter which pushes all the system related metrics into the time series
database of Prometheus. A use case where we have to visualize MySql data
used in our project, we will query and pull results for example, of the sales in the
month of June and later visualize it on a graph. Another use case may be of
showing real-time logs occurring in our web-server to keep an eye on the active
state of our service. In the end, combining the use case above will result in a
dashboard capable of providing most of the information ranging from system
metrics, project data analysis to server logs, and much more, added on the go.

8

Components of Grafana

Supported Data Sources

- AWS CloudWatch

The service monitors the resources used on Amazon Web Services in

realtime and provide metrics in an AWS panel, also provides features like

limit notifications and alarm.

- Azure Monitor
A service to serve metrics from all on-premises resources utilized on Azure
Cloud Platform encouraging maximized performance

- Elasticsearch
It is a search-based server which uses Lucene for queries under the hood. It can
be scaled in both directions vertically and horizontally. Usually used

within the ELK Stack along with Beats.

- Google Stackdriver
A solution for extracting data from multiple cloud platforms or services but

focused more on Google Cloud. It fetches and displays logs, metrics, metadata
from Google Cloud VM, Amazon EC2, and can do the same for

open source services like Cassandra, ElasticSearch, etc.

- Graphite
A monitoring tool conversed for running well on cloud infrastructure as well as
cheap hardware.

9

- InfluxDB
It is a time-series database and InfluxData developed it with a goal to

optimize data retrieval at a very high speed.

- Loki

A horizontally scalable log aggregation system inspired from Prometheus and
backed by Grafana Labs.

- Microsoft SQL Server (MSSQL)
 Relational Database Management System developed by Microsoft.

- MySQL and PostgreSQL
 Open Source, easy to learn, and widely used Relational Database.

- OpenTSDB
 A scalable time-series database that runs on Hadoop.

- Prometheus
A free software application with Time Series Database providing real-time

metric and alerting.

- Testdata
It is not actually a service but fake data supplied to the Grafana server to test
analysis and visualization and make conclusions for similar datasets.

10

Dashboard and Panels

The role of dashboards and panels play a major role in enhancing the visualization after
we have the data required. As discussed earlier a Dashboard is a collection of panels
and each panel is a unique entity with attributes like queries and visualizations in its
definition. Also, It is marked as the second step to complete the setup where either we
add a dashboard using an ID or create one by querying the sources we selected in step
one. Each dashboard consists of a name and version number along with a commit
message which helps in maintaining the version control and list the changes we made.
A dashboard is further divided into visualization and rows, each panel is capable of
being added as a visualization or gets converted to a row which may accommodate
similar panels focused on visualizing data, in short categorizing the visuals inside a
dashboard based on what they represent.

We are able to set a global refresh time for each dashboard and use additional settings
using a gear button given on the top of each unit. The setting preview is another view
which provides a list of features as described below:

- General

Consist of basic meta-data including tags, name, description, folder, and edit
permission followed by info related to time zone and cursor preview.

- Annotations

These are markings which specify an event. They can be vertical lines or icons
depending on the visualization type and give you detailed information when
hovered.

- Variables

We can define certain strings along with the use of some predefined functions
that are provided by Grafana to carry out labeling, assigning queries to name
tasks. These are listed under the variables heading.

- Links

It provides you a feature to add other dashboards or websites as links to be used
in the current dashboard. This can be useful when connecting related
visualizations and links associated with them.

11

- Versions

Version Control is the need for any long term task involving frequent changes
and the same is listed under this tab, including everything from versions along
with their commit message and users who made the same. We can also restore
the state of the dashboard to any previous commit with the help of a click.

- Permissions

This tab is responsible for any grant access provided to an individual or team in
the software. We can modify it on the basis of Users, Teams, or Roles and can
specify their access as View, Edit and Admin.

- JSON Model

The tab specifies a vast JSON data structure which is basically the complete
dashboard converted into a schema that helps in the commute and import/export
operations across the software.

Creating a dashboard

The options displays choice to create a new dashboard, create a new folder where
specific dashboards will be accumulated or Import a dashboard from the Grafana
Library.

12

Settings View

Panels are the building blocks of a dashboard and can be transformed into either a row
or visualization depending on the option we select. Once we tap for adding a query and
a new view is introduced which gives us an interface to implement the query on a data
source and watch the results in the display above. Also, we can switch a list of
visualizations provided in the menu which includes Graph, Gauge, Bar Gauge, Heat
Maps, Logs, etc. We are able to implement multiple queries and choose a suitable
representation for the same where each query consists of settings like if the data
fetched is to be real-time, the legend of that section, Format, Steps in range, etc. which
help in increasing the accuracy and improving the format of metrics displayed.

Panel Edit View

13

Users and Teams

On studying the basic need and fashion of software we can conclude that Users and
Groups are one of the most common features available. It’s so important because there
are always multiple people using the system and most of them belonging to a unique
team in the workplace. This feature is also tapped by Grafana in a better and easy way
under the option Users and Teams with a minimal adding process to mirror the offline
workplace hierarchy on the Grafana Structure in almost no time.

Here, we can add users along with their username/email or Teams which as the name
suggests are set of Users who fall under a specific category. These teams do have
additional settings that are capable of setting a default home screen dashboard, a UI
theme, and a time zone for the team. As discussed earlier, Users and Teams defined
here are chosen at the time of granting permissions on a dashboard.

14

Explore

It is one of the most interesting sections of the UI as the name suggests Explore, it lets
you query the selected data sources for freestyle analysis. This refers to the querying of
data without saving it in a dashboard instead for test purposes or to get a basic idea of
how the visualization looks for a certain time period which may result in valuable
predictions. At times we need to look through the current data to solve a bug or study
patterns for a temporary purpose, the Explore feature solves this problem. It gives you
the complete querying functionality with limited visualization and a split view to compare
between query results.

Grafana HTTP API

An API in its basic definition can converse as a set of protocols or functions defined in
the code of a system that can be utilized within the shell or from the outside with limited
access provided on basis of keys and limits. The HTTP API exposes its endpoints over
HTTP to third party users and allows them to make use of the functions to carry out
several functionalities of the system without using the User Interface. This consists of a
list of endpoints mentioned in the API docs which can be pinged with authorization
parameters issued by the provider which are to be included in the header along with
other options and later sending the request with the required body for changes to work.

https://grafana.com/docs/grafana/latest/http_api/

15

Contributions

 Note

❏ All the tasks are performed on Grafana Version
❏ Complete code details are mentioned in the attached Documentation
❏ Link to the Documentation with tasks in the sidebar

Tasks and Solutions

Task 1: Add a Dashboard to show metrics of MariaDB

Steps:

- Install MariaDB
- Install Prometheus
- Add mysqld_exporter to Prometheus
- Add Prometheus as a Data Source in Grafana
- Create a Dashboard and add Queries
- Choose name and Visualizations accordingly

Result:

16

Task 2: Add a Dashboard to show system metrics both in real-time and overtime

Steps:

- Install Prometheus
- Add node_exporter to Prometheus
- Add Prometheus as a Data Source in Grafana
- Create a Dashboard and add Queries
- Choose name and Visualizations accordingly

Result:

Real-Time Metrics

Over-Time Metrics

17

Task 3: Visualize the tail of Nginx and UWSGI logs in a Dashboard

Steps:

- Install ELK Stack (ElasticSearch, LogStash, Kibana)
- Install FileBeat
- Edit configuration files accordingly
- Create Index Pattern in Kibana
- Query the logs in Kibana > Explore using Lucene
- Add ElasticSearch as a Data Source in Grafana
- Create a Dashboard and add Queries
- Choose name and Visualizations accordingly

Result:

Nginx Access Logs

 Nginx Error Logs

UWSGI Logs

18

Task 4: Filter the Nginx Logs according to their HTTP Codes

Steps:

- Install ELK Stack (ElasticSearch, LogStash, Kibana)
- Install FileBeat
- Edit configuration files accordingly
- Create Index Pattern in Kibana
- Query the logs in Kibana > Explore using Lucene
- Add ElasticSearch as a Data Source in Grafana
- Create a Dashboard and add Regex Queries
- Choose name and Visualizations accordingly

Result:

19

Task 5: Create 3 Teams in Grafana and assign them specific dashboards

Steps:

- Create multiple users
- Create 3 Teams (Managers, System Administrators and Web Team)
- Assign Users to respective Teams
- Edit Team preferences for a default dashboard
- Edit Permission for each Dashboard visible to the specific team

 - Logs > Web Team [View] || System Administrators [Edit]
 - DB Metrics > Web Team [View] || System Administrators [Edit] || Managers [View]
 - System Metrics > System Administrators [Edit] || Managers [View]

Result:

Users Created

Teams Created

20

Side-Tasks in the process

The interesting part about solving the tasks mentioned above is I did not only create a
new dashboard for every analysis instead I’ve to follow the whole process of setting up
the data source from scratch. This happened because I was creating my use cases and
then making Visualizations and Analysis out of them. There were several installations
and server setups I went through in the sequence of solving the tasks, these are listed
below and the code for the same can be found in the attached Documentation:

● Managing SELinux and Firewall on CentOS 8
● Installing and Setup Nginx 1.17.10
● Adding SSL to Nginx using Letsencrypt
● Installing and Setup MariaDB 10.4
● Install and Setup Prometheus with additional Exporters
● Working with PromQL
● Install and Understand ELK Stack
● Working with Lucene and Kibana

Problems Faced

Problem: Either to use LogStash or not
Solution: LogStash acts as a middleware used to filter logs into a schema but as we
required logs directly from the files I used FileBeat which is a simple extension to ELK
Stack for logs.

Problem: Unable to pull log data from ElasticSearch
Solution: Initially use Kibana after FileBeat setup and create an Index Pattern using the
User Interface. Following this use this index pattern in the Grafana Data Source to
specify collection source.

Problem: Install SSL certificate for a particular domain only using certbot
Solution: $ sudo certonly -d <domain_name>

Problem: Adding configurations to SELinux
Solution: Mentioned in Installation and Setup Section (Sec. 1.2)

21

DevOps

Introduction to DevOps

It is defined as the software development strategy which bridges the gap between the
Development and Operations team of a company. Usually, people confuse DevOps with
a framework or technology but it’s not the case, it is just a concept/culture implemented
in the production environment to relieve the conflicts arising between the two teams.
There are a variety of tools available to counter issues in different phases of the code
life-cycle, these help the teams as a unit to build a pipeline and automate several
processes resulting in the build, test, and release of software in a fast and reliable
manner.

Talking about the history of DevOps it dates back to 2007 - 2008 when the development
and operations team were a completely different unit. They started being vocal about
the issues they faced in the development cycle and addressed it as a serious drawback
in the Industry. Soon discussions began to happen from in-person to online forums and
meetups which also included several leaders from Industry and soon they found a
solution to bridge the gap and made things connected in a sequence. It’s mentioned
that the transformation of a company to a DevOps culture doesn’t happen overnight but
once it is finalized the pipeline of the product becomes highly efficient and free of risk.

Mr. Jez Humble, the co-author of the book ‘The DevOps Handbook’ which is considered
as one of the golden learning sources, coined the term CALMS. It is a framework that
evaluates a company’s potential to shift towards DevOps culture and measure the
success quotient along with the transformation. The CALMS define its components as:

Culture
It specifies that DevOps is not all about tools and implementing the same cannot
guarantee the achievement of the former instead in its true sense, the focus is about the
collaboration of Development and Operations team with common goals and working
together to find a solution with the help of a tool designed for the use case.

22

Automation
One of the important steps involved in the ease of any process is automation as
repeated manual work may result in errors and also depicts an inefficient workflow.
Build, test, deploy and provisioning are the first steps while moving towards DevOps as
it builds a single system that would benefit everyone in different teams. Continuous
Delivery and Configuration as code are two major aspects of this step.

Lean
It encourages the workflow to be more focused upon the agile methodology or to
minimize the details and continue with the development on the go. The focus is on
continuous improvement and dealing with failure, making the system presentable in it;s
simplest form and consistent with your build to the complex state.

Measurement
The result of any effort can only be predicted after studying the data and attributes
related to the work and the same principle works with this methodology. There are
various tools and techniques to keep track of such data related to the changes
implemented in the process and based on this information several teams in the
department are capable of making better decisions and introducing features for the
welfare of our product.

Sharing
Connection is an important aspect of DevOps culture and it is only possible by sharing
information. It helps in easing the friction between development and operations teams
where a developer can indulge into the details of how the app is pipelined through
production because in the steps involving automation a basic idea of app design is
necessary, this can be made possible with proper communication between the two. For
the same reasons, there are support based developers whose work is to keep track of
issues arising from the client-side and write patches for a solution bridging the gap
between the two teams.

23

Category of Tools Available

There is a wide range of tools available for the problems occurring in the process of
adapting to a DevOps culture. Deciding the best tool which may fulfill your requirement
is what matters and is the role of the DevOps Engineer in a company. Tools may exist
to be a solution of a particular use case or just solving a variety of similar use cases in
the scenario, this doesn’t mean the complete stack tool is a proven best solution instead
it can be a fact that it may result in an overkill as a solution. For eg:- Using Ansible to
run a script on two servers, it’ll have to work but not needed.

The DevOps life-cycle consists of a set of phases which are the components of a
pipeline we get as a result, each such phase has its own set of tools as a solution.
Remember, there are a variety of tools available for each phase, and choosing the best
is only possible with proper research about the tool and communication with the
development team about the application design. Yes, experience does play an
important role in this field as there are a number of scenarios, drawbacks of techniques
which are only observed/visible after a saturation point.

The various phases involved are listed below with few tools that fall under the category:

Plan & Code
Roots of any application are the code structure it maintains from day one including the
versions, solving bugs, planning of tasks, and the complete workflow. This is the initial
building block of DevOps process and there are tools like Version control whose
responsibility is to maintain code versions according to changes with committing each
change with a message, not only this but there are a variety of features packaged along
for jumping across commits to connect to platforms like GitHub, BitBucket. Workflow
management tools are also a part of this category which lets you form a schedule to
keep a track of tasks and additional features integrated according to your needs.

Code
Git, Subversion, Linters

Plan
Jira, PivotalTracker, VersionOne, Targetprocess

24

Build & Test
This layer can be quoted as equivalent to what middleware is in development. Most of
the codes need a build that is to generate files in a certain format suitable for production
or make the code work as a unit. Also, the development of each application is
complemented by writing suitable test cases for the same to check it thoroughly and
keep a track of bugs before delivering it as a product. All of this if done manually will
consume a lot of time and may mess up the structure if not done is complete isolation.
In order to deal with it we implement automated builds and test checks using tools listed
below, these tools vary on the basis of languages and test cases contradicted.

 Build
 Gradle, Maven, ApacheAnt, Rake, Invoke

 Test
 Selenium, Junit, TestSigma, Tricentis Tosca

Deploy & Operate
One of the later stages of a pipeline is deployment, depending on the sequence
involved at times it is deployment and delivery or just delivery. The difference persists if
we’re directly making changes to the user-facing product or first doing it in our
environment. In the present scenario where scaling is a basic need of most of the
technologies the infrastructure scales at a fast pace. Even if we are dependent on some
Infrastructure as a service we still have to manage a number of resources with
consistency which gets out of hand most of the time. To solve this we cope up with the
tools listed below:

Deploy
AWS CodeDeploy, Docker, Rancher, Ansible, Puppet

Monitor
If implemented, the monitoring tools layer is known as the last one, and the DevOps
cycle loops back from this position. Almost every successful and production-grade
product has its own monitoring interface which consists of just every metric on the
system ranging from utilization, database to error logs. These help different teams
including the non-technical ones to study the working and performance of products and
make decisions accordingly. Few tools popular for the purpose are mentioned below.

Monitoring
ELK Stack, Splunk, Grafana, Graphite

Containerization

Importance of Containers

Containers are one of the best solutions for problems like “It works on my system but
not sure on others” basically, it’s a packaged
operating system necessary for basic functionalities with an added layer of basic utilities
on which the code is dependent followed by dependencies of code and directories in the
end added with scripts and command

The containerization was introduced as a concept getting inspired from the old cargo
ships where irregular-sized goods were tied together and their transport became a
challenge to the authorities, later containers helped these to g
bundles and everything was organized in a better manner. The journey of virtualization
in the world of systems has a long way, Virtual Machines are still used as one of the
ways to create isolation within the systems and the applic
what they do is segregate application from operating and hardware, each VM gets shot
up with a different operating system and allocated resources which drains the master
machine or a part of the resource is always wasted.

25

Containerization

Importance of Containers

Containers are one of the best solutions for problems like “It works on my system but
not sure on others” basically, it’s a packaged environment with the root libraries of an
operating system necessary for basic functionalities with an added layer of basic utilities
on which the code is dependent followed by dependencies of code and directories in the
end added with scripts and command to get the job running.

The containerization was introduced as a concept getting inspired from the old cargo
sized goods were tied together and their transport became a

challenge to the authorities, later containers helped these to get sorted inside them as
bundles and everything was organized in a better manner. The journey of virtualization
in the world of systems has a long way, Virtual Machines are still used as one of the
ways to create isolation within the systems and the applications running inside them but
what they do is segregate application from operating and hardware, each VM gets shot
up with a different operating system and allocated resources which drains the master
machine or a part of the resource is always wasted.

Containers are one of the best solutions for problems like “It works on my system but
environment with the root libraries of an

operating system necessary for basic functionalities with an added layer of basic utilities
on which the code is dependent followed by dependencies of code and directories in the

The containerization was introduced as a concept getting inspired from the old cargo
sized goods were tied together and their transport became a

et sorted inside them as
bundles and everything was organized in a better manner. The journey of virtualization
in the world of systems has a long way, Virtual Machines are still used as one of the

ations running inside them but
what they do is segregate application from operating and hardware, each VM gets shot
up with a different operating system and allocated resources which drains the master

26

This was solved with the introduction of containers as they shared the same Operating
System and were lighter, better performing, scalable, and easy to move. Above is a
picture contrasting the architecture between the two, on one side Virtual Machines sit
upon a Hypervisor over infrastructure mechanism with each VM having its own OS,
Libraries and Applications whereas in the Docker scenario a Container Engine sits upon
an Operating System over Infrastructure mechanism with each container having the
essential binaries and libraries with the apps installed. Some of the popular
Virtualizations software and Containerization software are listed below:

Virtualization
VMware, VirtualBox

Containerization
Docker, Rocket

Container Engines

A container engine as discussed earlier is a layer above the infrastructure we use which
contains the root bins/libs essential for connecting docker with the OS beneath. As the
name suggests the working of the whole docker system is dependent on this engine, it
comprises of three major operations:

Providing API / User Interface
The operation is a bit self-explanatory as it quotes about providing a way to easily
interact with the processes related to container manipulation. So that we do not have to
run a script or interact with a language/set of functions, instead it gets a command line
connected with it which provides us a list of commands to carry out all of its features
using CLI and focus on our plan, get things faster and managed.

Pulling/Expanding Images to disk
This feature manages images and management of layers, it is responsible for pulling
images and storing them in the local cache so that if they’re required by the container
we can supply them from the local storage. Each time a new container is started the
engine uses this image and also adds an extra layer in case for the data to be written in
the container. The process involves pulling the image layer-wise in order to create a set
of files, all of this governed under OCI(Open Containers Initiative). The image spec
defines content and metadata in the container repository while the distribution spec
specifies a set of rules to grab necessary layers in the Registry Server.

27

Next, as quoted above by usage of cached images, what actually happens under the
hood is a virtual copy of the image files that is created and mapped to the container.
Later adding a writable volume layer if necessary. These are achieved using OS
functionalities like overlayfs and device-mapper.

Building a configuration file
This is a configuration file created by container engine and supplied to runc which is an
OCI runtime, this tool requires two CLI options

- The directory where contents of the image with layers will be expanded
- The manifest file which contains directives to be followed

As none of the above tasks are simple to follow as pulling images requires maintaining
layers and creating the manifest file is complex as it gets vast and complex these are
carried out by the docker engine and provided as a utility to users.

Implementation of Docker

Docker is an open-source tool designed to create, deploy, and run containers with
packaged applications. This provides an isolated and developer-oriented environment to
the code so that it performs in the same manner on any machine like it would on the
developer’s system, not only this but scaling and moving your application gets easier
across servers. We have already discussed the importance of containers and container
engines in the article above and docker is a mere implementation to bring all of that in
the form of the tool.

The components of the Docker engine which sits upon the infrastructure to provide
container-based services consist of:

Dockerd - The user-facing API(A server with long-running daemon process).

Containerd - A runtime to abstract away syscalls or OS-based functionality to run
containers is different operating systems.

Runc - An OCI runtime enclosed in containerd which takes parameters for image
directory and manifest file later being responsible for defining directives.

28

Steps to Create a Docker Image

The complete concept is based upon a few components namely Dockerfiles, Container
images, containers, commands, etc. talking about the workflow of containerizing a
project with docker, the approach to follow concludes that first, we have to understand
the architecture of an app and the technology involved to choose a base image in our
Dockerfile. There exists a list of commands to be specified in the Dockerfile each with a
motive to perform or comprehend an action. For eg- COPY to copy files from drive to
container, RUN to execute a command inside the container, CMD to execute a
command at the runtime of container etc.

Next, we study about the libraries, packages, and additional languages/techs that will be
required by our code as a base to perform and specify their installation using the RUN
command inside the file. Once we have the basic dependencies we can move towards
specifying commands to copy required directories inside a path in the container, these
will include source code as well as the relevant scripts to support the system.

Now we will set the path to the working directory using WORKDIR and install
technology-based libraries/packages required by our code to get the application
working, additional commands may be issued based on the extra scripts we’re copying
and the type of application we are using. These may include EXPOSE which is used to
expose a port to the outside world of containers and CMD to run the command which
fires up our app.

After getting our Dockerfile ready in place we will build the image and add a tag to it,
also will push it to an image registry like DockerHub if necessary. Later these images
can be pulled instead of building them each time which will ease the hassle of setting up
a development environment of the application. We can use these images in Docker
Compose or Docker Stack directly to achieve more advanced features supplied by
Docker. Docker Compose is an external utility to be installed along with docker which
helps us define scripts to run multiple containers at once with configurations supplied to
each one of them using a syntax defined by docker. This helps in running a
microservices-based system using a single file.

Implementation Work
https://docs.docker.com/engine/reference/builder/ (Link to complete reference for DockerFile)

https://github.com/akshat0047/yaksh-devops (Link to Dockerfiles created)

https://hub.docker.com/r/akshat0047/yaksh-codeserver (Link to Yaksh Codeserver Image)

https://hub.docker.com/r/akshat0047/yaksh-django (Link to Yaksh Django Image)

29

The operations related with containers include listing the images on the local machine,
starting a container, stopping a container, removing the image from the local system,
adding a volume to it, assigning ports and much more, the list is long so I have
mentioned a cheat sheet of important commands below along with the link to complete
documentation. Once we have the image we can follow these commands to perform
any functionality provided by Docker.

There are some important concepts about containers for which the explanation is out of
the scope of this report, please refer Docker Official Documentation and refer them for a
better understanding of the background features, few of them are:

Volumes, Network, Port mapping, Environment Variables, Exec into container, etc.

https://docs.docker.com/ (Complete Documentation for Docker)

30

CI / CD

Workflow and Advantages

Continuous Integration and Continuous Delivery wraps a set of cultures and practices
concerned with enabling frequent code changes in an automated and reliable manner. It
is one of the crucial steps involved in the DevOps lifecycle and a must for successfully
adopting Agile Methodology. The reason being it helps in focusing on better code
design, security, and features rather than dealing with the hassle of hosting and
maintaining different versions on the server.

The goal of the process is to automate build, package, and then test the application, this
involves providing a complete module for checking against test cases defined for the
app by the testing team. All this is made possible with a series of steps taking place in
an isolated environment which is usually a cloud server. It is the place where installation
of necessary packages, setup of environment, and Integration takes place. The code is
maintained with the help of some version control system with centralized storage from
where each change triggers the pipeline designed for the complete process to take
place.

The code travels the same pipeline each time and follows the steps/specifications listed
in a script along with environment variables which are a must to send in each run. This
results in Continuous Integration, later based on the company's workflow they may have
multiple deployment environments or just one. Accordingly, the code is moved inside a
container or compact format to deployment/testing/delivery machine and accomplishes
the purpose of a CI/CD pipeline. All of this results in a workflow where the application is
capable of getting automatically tested and hosted as a product with the push of a
commit. Always remember, continuous testing is important to deliver a quality product.

31

Travis CI

It is a Continuous Integration tool that gets integrated with GitHub and BitBucket to
provide a platform where you are able to build and test your code and then schedule it
for deployment if required at some other platform. Each repository consisting of a Travis
webhook has a .travis.yml file defined in it which defines the complete configuration of
the environment where integration will take place. This webhook is triggered on several
events that can be chosen under the settings tab of a repository. We can enable it on a
pull request, commit or branch merge and many more detailed settings for customizing
the trigger mechanism is provided for every use case.

The best part about this hosted and distributed continuous integration tool is that it
provides you with free services if your project is open source. It supports a number of
languages and makes the workflow from your development space to deployment server
smooth and just a push away. It comes in two versions; the free version requires your
code to be open source and hosted on GitHub, the enterprise version is for companies
to be used as a part of the workplace and starts from 63$ per month.

Implementation in Yaksh and Node App

To integrate a project with Travis CI the steps you need to follow are mentioned below:

- SignUp for a Travis Account
- Connect it to your GitHub
- Switch on the repository you want to add a webhook to
- Add a travis.yml configuration file to the repository

(https://docs.travis-ci.com/user/customizing-the-build)
- Specify events that trigger Travis under those repositories settings tab
- Push the code and watch your build in Travis Dashboard

Travis File for Yaksh
https://github.com/FOSSEE/online_test/blob/master/.travis.yml

32

Travis File for Node App

language: node_js
node_js:
 - "12.13.0"

cache:
- node_modules

before_install:
- npm install -g npm

script:
- npm install

deploy:
 provider: heroku
 api_key:
 secure: xxxxxx
 app: alias-chat
 on:
 repo: akshat0047/socket-chat
 branch: master

Dashboard

Orchestration

Introduction to Kubernetes

Orchestration can be termed as scaling of containers in an enclosed environment with
the automated arrangement, combined working of complex computer systems and
services.
It is different from running multiple containers at once as performed by docker
utility instead it’s more focused on running multiple containers inside pods with
automated configuration to work with each other with an added layer to all the pods
making it a cluster.

Kubernetes is an open-source tool for orchestration providing vast features with several
implementations, a detailed level of customization for those who
provision of clusters using managed
remote environment for beginners. The learning curve of Kubernetes is a bit steep so
understanding the whole mechanism and implementing a cluster re
image below is a mere representation of Kubernetes Structure.

33

Orchestration

Introduction to Kubernetes

Orchestration can be termed as scaling of containers in an enclosed environment with
automated arrangement, combined working of complex computer systems and

It is different from running multiple containers at once as performed by docker
utility instead it’s more focused on running multiple containers inside pods with

mated configuration to work with each other with an added layer to all the pods

source tool for orchestration providing vast features with several
implementations, a detailed level of customization for those who have mastered it, and
provision of clusters using managed-services along with tools to run it on a local or
remote environment for beginners. The learning curve of Kubernetes is a bit steep so
understanding the whole mechanism and implementing a cluster re
image below is a mere representation of Kubernetes Structure.

Orchestration can be termed as scaling of containers in an enclosed environment with
automated arrangement, combined working of complex computer systems and

It is different from running multiple containers at once as performed by docker-compose
utility instead it’s more focused on running multiple containers inside pods with

mated configuration to work with each other with an added layer to all the pods

source tool for orchestration providing vast features with several
have mastered it, and

services along with tools to run it on a local or
remote environment for beginners. The learning curve of Kubernetes is a bit steep so
understanding the whole mechanism and implementing a cluster requires patience. The

34

Major Components Involved

Pod

It is a collection of one or more containers bonded together to represent a microservice
where the constituent containers share the same space and host along with pre-
configured network settings

Replication Controller

A replication controller is a set of rules or a component programmed in such a manner
that it ensures x number of pods working at a specific time inside the cluster. If they get
lesser or more than the specified limit, the controller will scale them accordingly.

Replica Set

It’s a modified version of the Replication Controller with the only difference that it selects
the pods to be managed with the use of tags instead of pod name.

Services

A service can be defined as a policy along with specifications that is connected to a set
of pods and make them accessible as a microservice inside the cluster.

ConfigMap

This helps us to isolate configuration inputs from the active pods so that we can change
the configuration without editing the images or restarting pods.

Secrets

Almost the same as ConfigMap but the only difference is these consists of secrets that
are used within Pods like passwords and API secrets are meant to remain confidential

Daemon Set

It is a component which when assigned to a specific pod makes sure that it runs at least
an instance of that pod, used when a service is to be made available at each node

35

Deployment

This is a combined implementation of Replica Set and Pods with features to make the
cluster attain the desired state. When deployed these can change the active state to a
desirable state by changing replication policies and pods configuration. Also,
deployments offer a great feature of rolling out updates for the application.

Load Balancer

Depending upon the type of implementation we are using for Kubernetes the definition
of a load balancer can vary but performing a common final result that is sanctioning an
external cloud service that we would choose to distribute traffic across our nodes in the
Cluster. In the managed implementation it can be done with the help of running a
service while in the manual configuration we have to issue a load balancer on our own.
It is an essential component as Kubernetes serves the purpose of running multiple
instances and when they’re related to any frontend service, it becomes important to
have a common domain to access any of the exposed pods for the same.

Implementing Kubernetes on Yaksh/Sample App

There are a list of approaches that I followed to implement Kubernetes on Yaksh as
listed below:

https://github.com/akshat0047/yaksh-devops (Link to Kubernetes Configuration File)

Using Kubeadm, kubectl, Kubelet and Pod Network to setup from scratch

36

Using kops and Terraform on AWS EC2

Using Managed Service on Digital Ocean

Using Minikube on Local System

37

StaYtus

Overview

Staytus is an open-source status app that can be installed on your server for showing
the statuses of several services present on the server to your clients. This helps in
keeping them informed about issues being faced at the moment and track these issues.
Also, we can schedule maintenance sessions on the same which is shown as a
notification on the site along with email notifications that are sent to users who have
subscribed to us.

The Staytus is a very simple project with only limited features that are listed below:

General Settings
This consists of general information about the status site related to its name, email id
associated, description, time zone, website-URL, protocol, etc.

Users
Lists users that are allowed to make changes in the admin panel, we can add users
here

Design
Takes cover picture and logo as inputs to present it on the status site for a customized
look

Services
List of services offered by the organization

Service Statuses
Applicable options of statuses that can be applied to the present service to depict a
state

Service Groups
Groups of services to cluster them in a meaningful way

API Tokens
Key-Value pairs required to interact with the site using HTTP requests

38

E-Mail Templates
Pre-Designed email format to be sent to the subscriber when a change is triggered and
the email option is chosen

Subscribers
This panel adds and lists the people who submit their email id to get notified about all
the updates

Maintenance
Panel to list and add maintenance sessions

Issues
Panel to list and add issues along with edit the tracking stages according to the
progress

Dashboard
Admin side view of the complete site services with buttons to directly add issues and
maintenances sessions

Implementation

The installation instruction for Staytus can be found on the official
blog(https://blog.k.io/atech/install-staytus-tutorial) as well as mentioned below though it
is suggested to only opt for the method below if the official method doesn’t work
naturally as my way of accomplishing it involves complex changes that I had to make
while debugging the installation.
I’ve also added a part to the fossee script for updating the statutes using HTTP API, this
script is run as a cron job every hour and is present in this repository.
(https://bitbucket.org/tslee/python.web.sites.checker/src/master/)

39

Installation

● Install dependencies
- $ sudo -s
- $ dnf update
- $ dnf install @ruby:2.5
- $ ruby-devel nodejs git libmysqlclient-devel
- $ dnf groupinstall ‘Development Tools’
- $ gem install bundler procodile

● Create Database

- $ mysql -u root -p
CREATE DATABASE `staytus` CHARSET utf8mb4 COLLATE
utf8mb4_unicode_ci;
CREATE USER `staytus`@`127.0.0.1` IDENTIFIED BY 'staytus’;
GRANT ALL ON `staytus`.* TO `staytus`@`localhost`;
exit;

● Add user for staytus

- $ useradd staytus
- $ passwd staytus
- $ usermod -aG wheel staytus
- $ su - staytus

● Clone application and modify code to work with bcrypt 3.1.12

- $ git clone https://github.com/adamcooke/staytus
- $ cd staytus
- $ nano Gemfile

Change: gem 'bcrypt' → gem 'bcrypt', '3.1.12'

● Build a new Gemfile.lock outside the directory

- $ cp Gemfile ../.
- $ cp Gemfile.lock ../.
- $ cd ..
- $ bundle install

● Replace the old files with new one

- $ rm Gemfile Gemfile.lock
- $ cp ../Gemfile .
- $ cp ../Gemfile.lock .
- Edit the code to cope up with the update

40

- $ mkdir -p app/assets/config && echo '{}' > app/assets/config/manifest.js
- $ nano config/initializers/assets.rb

Change: Rails.application.config.assets.precompile += [/\.jpg\z/, /\.png\z/,
/\.gif\z/, /\.svg\z/]

To: Rails.application.config.assets.precompile << ["*.jpg", "*.png", "*.gif","*.svg",
"*.eot", "*.woff", "*.ttf"]

● Copy icons to be served

- $ sudo cp -r app/assets/images public/

● Install gems and add Database credentials
- $ bundle install --deployment --without development:test
- $ cp config/database.example.yml config/database.yml
- $ nano config/database.yml

● Hostname: localhost
● Username: staytus
● Password: staytus
● Database: staytus

● Compile assets and build database

- $ bundle exec rake staytus:build
- $ bundle exec rake staytus:install

● Test in development mode

- procodile start --dev

● Start in background
- procodile start

● Add Nginx Configuration as mentioned in Grafana Installation and Setup (Sec. 1.2)

41

AWDash

Overview

It is a Wrapper over AWStats which is an open-source monitoring that keeps track of
metrics like hits, bandwidth, unique visits, visits, etc. The tool is capable of showing
metrics for all the attributes according to months, daily, and weekly that are too
complemented with visualization. Though we are able to filter these stats manually
according to time, the tools don't provide us with a dashboard interface to monitor
multiple sites with the required metrics at once.

AWDash is a solution to the same where we can add domains along with their AWStats
link and log filename on the server. Written in PHP, the wrapper has an API structure
that returns information as well as views. It presents us with a dashboard consisting of
all the websites hosted on AWStats along with metrics Unique Visits, Visits, Hits, Total
page loads, and bandwidth. We can also query these metrics for a time period using an
integrated AJAX form which queries the API and the backend and returns contact the
logs on each server using a PHP Script present on each one of them, in the end,
providing us the result.

Implementation

Code - https://github.com/FOSSEE/AWDash

42

Reference

● https://www.cyberciti.biz/

● https://www.digitalocean.com/community/tutorials

● https://linuxize.com/

● https://medium.com/

● https://gravitational.com/

● https://kubernetes.io/

