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Chapter 1

Introduction

In this report, I mention my contributions to open-source software, made in the
duration of the FOSSEE Fellowship, starting from 20th April 2020 to 15th June 2020.
Contributions were made using a Free-Libre/Open Source Software (FLOSS) known
as "R" as a part of the FOSSEE project by IIT Bombay and MHRD, Government of
India. The FOSSEE project is a part of the National Mission on Education through
ICT. The thrust area is the adaptation and deployment of open-source simulation
packages equivalent to proprietary software, funded by MHRD, based at the Indian
Institute of Technology Bombay (IITB). My contributions involved making Spoken
Tutorial scripts and developing a river level and discharge prediction system using
ANN and CNN.
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Chapter 2

Spoken Tutorial

The Spoken Tutorial project aims to make video tutorials on Free and Open Source
Software (FOSS) available in several Indian languages. The goal is to enable the
use of spoken tutorials to teach in any Indian language to learners of all levels of
expertise - Beginner, Intermediate or Advanced. Every tutorial has to go through
a series of stages to ensure that it is perfect for its audience, which is crucial for
achieving the goal of this project. I contributed to the creation of the "Logistic
Regression" and "Support Vector Machine" tutorial scripts.

2.1 Logistic Regression
Logistic regression is a classification algorithm which predicts the class of a variable
based on multiple predictor variables. It uses a sigmoid function to convert the
output (i.e. probabilities) into the class of a target variable. I used "PimaIndianDi-
abetes" [1] data set for classifying the test for diabetes of patients. The pre-defined
packages used were "mlbench" [2], "pROC" [3] and "caret" [4].

2.2 Support Vector Machine
Support Vector Machine (SVM) being a supervised machine learning algorithm is
used for both regression and classification. The main idea of SVM is to find an N-
dimensional hyperplane, where N is the number of features, that distinctly classifies
the data points. I used "framingham" data set to classify whether a patient "died,"
"experienced hypertension" or "left the study without experiencing either event."
The pre-defined packages used were "caret" [4], "LocalControl" [5] and "e1071" [6].
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Chapter 3

River Level and Discharge
Prediction System

Fellows were supposed to work on a research project along with the Spoken Tutorial
scriptwriting. For me, the project involved collecting and analyzing the past 19
years (2000 - 2019) of data associated with the Periyar river, Kerala. The process
of analysis consisted of exploring the data, cleaning it and then applying Artificial
Neural Network and Convolutional Neural Network to predict the river level and
discharge at downstream based on the parameters of upstream. I used R for data
analysis and LATEX for report writing.

3.1 Abstract
Floods drastically affect a significant portion of India’s population, making it the
worst flood-affected country in the world. The recent disaster in Kerala during Au-
gust 2018 is a typical example of the problem India faces each year due to floods
[7]. Hence, flood forecasting in India is a necessity for both water resource man-
agement and disaster management. I selected the Periyar river as the target river
for my project because it is the longest river in Kerala with a length of 244 km. It
also covers the largest area of 5029.03 square km as compared to the other rivers in
the state. It also has the highest number of sub-basins, i.e. 183 and micro water-
sheds, i.e. 448 in Kerala [8]. I collected rainfall (mm), river level (m) and discharge
(m3/s) data associated with two manual stations of the river, namely Vandiperiyar
(upstream) and Neeleeswaram (downstream) for my analysis. Rainfall data was the
same for both stations. I made use of nineteen years of data (2000 - 2019) for river
level and discharge forecasting at Neeleeswaram station with one-day, two-days, and
three-days lag. I individually predicted river level (m) and discharge (m3/s). Rain-
fall (mm), discharge of upstream (m3/s) and discharge of downstream (m3/s) were
the inputs for predicting the discharge of downstream (m3/s). Similarly, for the pre-
diction of downstream level (m), inputs were rainfall (mm), level of the upstream
(m), and level of downstream (m). ANN provided 0.000802, 0.0011 & 0.00152 as the
Mean Squared Error (MSE) values for downstream discharge (m3/s) and 0.000184,
0.00277 & 0.00317 for downstream level (m) whereas CNN gave 0.000872, 0.00124 &
0.00138 as the MSE values for downstream discharge (m3/s) and 0.00194, 0.00270
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& 0.0032 for downstream level (m) corresponding to the three forecasting cases of
one-day, two-days and three-days lag.

3.2 Introduction
Floods cause social and economic damage, as well as the loss of human life. We can
reduce its destruction by accurate prediction of river level and discharge which are
the critical components of a river. Flood prediction also benefits the planning and
managing of water resource system. It turned out that precise forecasting of river
level and discharge is a complex process and depends on many dynamic factors such
as rainfall, riverbed terrain and other climatic conditions.

Currently, we use two approaches for hydrological forecasting. The basis of the
first approach is mathematical modelling of physical dynamics between components
of the hydrological system. These models need massive data and extra care for esti-
mating parameters. The second approach is to use data-driven methods like ANN,
based on the statistical relationship between the hydrological input and output vari-
ables.

In this project, ANN and CNN were used to forecast river level and discharge with
one-day, two-days and three-days lag at Neeleeswaram station (downstream) us-
ing the data of rainfall, Vandiperiyar station (upstream) and Neeleeswaram station
(downstream).

Figure 3.1: Lag applied to data

The prediction ability of obtained models was examined using two parameters,
namely Mean Squared Error (MSE) and Mean Absolute Error (MAE).

3.3 Methodology

3.3.1 Data Collection
Nineteen years of data related to Periyar river and rainfall in its region, starting from
1st June 2000 to 13th August 2019, was initially collected from Water Resources
Information System (WRIS) [9]. WRIS is a public domain initiative of India-WRIS
project, which was launched by the Central Water Commission (CWC) and Indian
Space Research Organization (ISRO).
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Following steps were followed to collect the required data from India-WRIS -

1. Rainfall: WRIS Tools -> WRIS Data online -> Applications -> Rainfall
(Basin) -> WEST FLOWING RIVERS FROM TADRI TO KANYAKUMARI
-> PERIYAR AND OTHERS

2. River level and discharge: WRIS Tools -> WRIS Data online -> Applications
-> River point (River) -> Periyar

The data can be accessed only after registration on India-WRIS.

3.3.2 Data Exploration
3.3.2.1 Rainfall Data

Rainfall data consisted of three columns with the name of "Dates," "Normal Rainfall
(in mm)," and "Actual Rainfall (in mm)." "Normal Rainfall (in mm)" is the amount
of expected precipitation per year. The following code snippet shows the first six
rows and a summary of the rainfall data.

1 > head(df)
2

3 Dates Normal Rainfall Actual Rainfall
4 1 6/1/2000 13.75 9.27
5 2 6/2/2000 15.84 17.62
6 3 6/3/2000 16.17 10.01
7 4 6/4/2000 15.51 4.61
8 5 6/5/2000 16.91 10.37
9 6 6/6/2000 16.89 46.25

10

11 > summary (df)
12

13 Dates Normal Rainfall Actual Rainfall
14 Length :7153 Min. : 0.000 Min. : 0.000
15 Class : character 1st Qu.: 1.780 1st Qu.: 0.020
16 Mode : character Median : 6.810 Median : 1.890
17 Mean : 7.917 Mean : 5.953
18 3rd Qu .:12.140 3rd Qu.: 7.730
19 Max. :25.530 Max. :148.380

3.3.2.2 Vandiperiyar Station (Upstream) Data

Vandiperiyar station is an upstream station of the Periyar river. Its data set con-
sisted of five columns named as "Dates," "Last.10.Year.Average (in m3/s)," "Last.Year
(in m3/s)," "Discharge (in m3/s)," and "Level (in m)."
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1 > head(df1)
2

3 Dates Last .10. Year. Average Last.Year Discharge Level
4 1 6/1/2000 0.226 0 0.226 791.12
5 2 6/2/2000 0.433 0 0.433 791.18
6 3 6/3/2000 0.791 0 0.791 791.25
7 4 6/4/2000 0.988 0 0.988 791.28
8 5 6/5/2000 0.822 0 0.822 791.25
9 6 6/6/2000 9.564 0 9.564 791.78

10 > summary (df1)
11

12 Dates Last .10. Year. Average Last.Year
13 Length :6784 Min. : 0.0000 Min. : 0.000
14 Class : character 1st Qu.: 0.1873 1st Qu.: 0.000
15 Mode : character Median : 2.4875 Median : 1.125
16 Mean : 5.3876 Mean : 4.804
17 3rd Qu.: 8.5908 3rd Qu.: 4.911
18 Max. :146.5286 Max. :206.082
19

20 Discharge Level
21 Length :6784 Min. : 2.09
22 Class : character 1st Qu .:791.05
23 Mode : character Median :791.32
24 Mean :773.40
25 3rd Qu .:791.63
26 Max. :793.96

The above summary shows that the "Discharge" column contained data in character
format as it was comprised of hyphens for 369 missing data points. Also, it included
1691 zero values, which was invalid as discharge values cannot be zero if the cor-
responding level values are non-zero. Therefore, I considered all the hyphens and
zeros as missing values.

3.3.2.3 Neeleeswaram Station (Downstream) Data

Neeleeswaram station is a downstream station of the Periyar river. Its data set con-
sisted of five columns, namely "Dates," "Last.10.Year.Average (in m3/s)," "Last.Year
(in m3/s)," "Discharge (in m3/s)," and "Level (in m)."

1 > head(df2)
2

3 Dates Last .10. Year. Average Last.Year Discharge Level
4 1 6/1/2000 141.1510 362.0 65.46 1.08
5 2 6/2/2000 154.0550 281.4 209.6 1.98
6 3 6/3/2000 237.8930 265.7 129.3 1.5
7 4 6/4/2000 188.1360 237.3 60.3 1.07
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8 5 6/5/2000 226.4560 187.3 42.74 0.98
9 6 6/6/2000 286.5602 398.0 173.06236 1.67

10

11 > summary (df2)
12 Dates Last .10. Year. Average Last.Year
13 Length :6737 Min. : 8.472 Min. : 0.00
14 Class : character 1st Qu.: 55.794 1st Qu.: 41.69
15 Mode : character Median : 154.007 Median : 124.10
16 Mean : 221.720 Mean : 212.93
17 3rd Qu.: 354.111 3rd Qu.: 284.84
18 Max. :1138.416 Max. :6323.55
19

20 Discharge Level
21 Length :6737 Length :6737
22 Class : character Class : character
23 Mode : character Mode : character

The above summary concludes that both "Discharge" and "Level" columns were
containing data in character format as they both had hyphens for 176 and 2 missing
data points respectively. Also, there were 299 zero values in the "Discharge" column.
As stated earlier, this situation is invalid because discharge values cannot be zero if
the corresponding level values are non-zero. Thus, I considered all the hyphens and
zeros as missing values.

3.3.3 Data Cleaning
Data exploration indicated that the raw data came up with many challenges. Hence,
data cleaning was required, and it turned out to be one of the essential parts of this
project.

In both of the stations’ data sets, level (in m) and discharge (in m3/s) were highly
correlated. As a result, one variable could be used to predict another due to their
strong correlation. Different techniques applied to clean the data of Vandiperiyar
and Neeleeswaram stations made use of this strong correlation. Details regarding
the complete data cleaning process are available in the following sections.
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3.3.3.1 Rainfall Data

The "Normal Rainfall" was an irrelevant variable because it contained the expected
rainfall calculated by taking an average of at least the last 30 years of data. It
may not contribute well to the accurate prediction of both level and discharge and
hence removed from the dataset. Also, the dates were initially in character format
but later converted to "ymd (year/month/date)" format. Zeros are valid in rainfall
data. Figure 3.2 displays cleaned rainfall data.

Figure 3.2: Rainfall Data (2000 - 2018)

3.3.3.2 Vandiperiyar Station (Upstream) Data

Following steps were performed to clean the Vandiperiyar station data -

1. Remove "Last.Year" and "Last.10.Year.Average" variables from the data set
due to their irrelevance to the prediction.

2. Create a copy of the data set with the name "Temp." In "Temp" eliminate all
rows with missing values as per section 3.3.2.2.

3. Remove all rows corresponding to the outliers of the "Level" column in "Temp"
data set.

4. Create a scatter-plot of "Discharge" column values against "Level" column val-
ues of "Temp" data set. Fit a polynomial of degree three over the scatter-plot.
Use the fitted model to predict missing "Discharge" column values by inputting
corresponding "Level" column values from the original data set.

5. Remove the "Temp" data set.

6. Replace all missing "Discharge" column values in the original data set with the
values predicted using the generated polynomial model.
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Figures 3.3 and 3.4 display the cleaned data of Vandiperiyar station obtained from
the steps mentioned above.

Figure 3.3: Vandiperiyar station discharge (2000 - 2018)

Figure 3.4: Vandiperiyar station level (2000 - 2018)

3.3.3.3 Neeleeswaram Station (Downstream) Data

Following steps were performed to clean Neeleeswaram station data -

1. Remove the two variables "Last.Year" and "Last.10.Year.Average", due to their
irrelevance to the prediction.

2. If the data type of any remaining column in the data set is "factor" instead
of "numeric," then make use of "unfactor" function of "varhandle" package for
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data type conversion.

3. Create a copy of the data set with the name "Temp." In "Temp" eliminate all
rows with missing values as per section 3.3.2.3.

4. Predict missing "Discharge" column values from "Level" column values by fit-
ting an exponential curve using "nlsfit" function of "easynls" package over the
"Temp" data set by keeping "Level" as the independent variable and "Discharge"
as the dependent variable.

5. Create a scatter-plot of "Level" column values against "Discharge" column val-
ues of "Temp" data set. Fit a polynomial of degree five over the scatter-plot.

6. Use the previously fitted exponential model to predict missing "Discharge"
column values by inputting "Level" column values from the original data set.

7. Use the previously fitted polynomial model to predict missing "Level" column
values by inputting "Discharge" column values from the original data set.

Figures 3.5 and 3.6 display the cleaned data of Neeleeswaram station obtained from
the steps mentioned above.

Figure 3.5: Neeleeswaram station discharge (2000 - 2018)
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Figure 3.6: Neeleeswaram station level (2000 - 2018)

The cleaned data set contained values ranging from "2000-Jun-01" to "2018-Jun-
01" as some data points were removed in the cleaning process. Also, the data was
continuous only until "2016-May-31."

3.3.4 Data Analysis
3.3.4.1 Rating Curves

Rating curves are graphs depicting the relationship between discharge and level of
a river.
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Figure 3.7: Rating curve - Vandiperiyar station

An outlier can be observed in the graph. Hence, it is plotted again without the
outlier to visualize the remaining data better.

Figure 3.8: Rating curve - Vandiperiyar station
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Figure 3.9: Rating curve - Neeleeswaram station

A direct relationship between the "Level" and "Discharge" variables can be observed
from figures 3.8 and 3.9.

3.3.4.2 Artificial Neural Network

Artificial Neural Network (ANN) is a data-driven model inspired by the architecture
of the biological brain. ANN was used in this project because of its capability to
recognize complex nonlinear relationships between the data inputs and outputs [10].
The relation among the inputs and outputs is illustrated as follows -

Y = f(Xn) (3.1)
where Xn is an n-dimensional input vector consisting of variables X1, X2, ...., Xn.
Network parameters represent the function form of f(.) as shown in equation 3.1.

ANN commonly consists of 3 layers, namely an input layer, a hidden layer, and
an output layer. The complexity of ANN is closely related to the hidden layers. The
size of the input data decides the number of hidden layers. In general, there is no
specific way of finalizing an appropriate amount of hidden layers. One commonly
used method to choose it is by training the model multiple times with a varying
number of hidden layers and select the case where errors are least.

A stochastic gradient descent optimization algorithm is utilized for training of an
ANN, and its weights get updated via a backpropagation algorithm which depends
on the errors calculated from the loss function. The loss function gives the differ-
ence between actual output and the predicted output [11]. These errors are then
propagated to the previous layer by calculating gradients of the loss function.
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A neural network can be applied in R using "layer_dense" function of "keras" pack-
age. It requires the following essential parameters -

1. units - A positive integer which denotes the dimensionality of the output space

2. activation - Type of activation function to choose with default set to "linear"

Data from "2000-Jun-01" to "2016-May-31" was selected for training. The rest was
for testing.

Model structure -

For predicting river discharge (m3/s) -

1. Input parameters - Rainfall (mm), discharge at Vandiperiyar station (m3/s)
and discharge at Neeleeswaram station (m3/s)

2. Output parameters - Discharge at Neeleeswaram station (m3/s) with one-day,
two-days and three-days lag

For predicting river level (m) -

1. Input parameters - Rainfall (mm), level at Vandiperiyar station (m) and level
at Neeleeswaram station (m)

2. Output parameters - Level at Neeleeswaram station (m) with one-day, two-
days and three-days lag

Training parameters -

1. Number of dense layers = 3

2. Units used = (64, 32, 1)

3. Activation function = relu

4. Dropout rate = 0.2

5. Optimizer = adam

6. Epochs = 100

7. Batch size = 10

1 library ( keras ) # For ANN
2 library ( DataCombine ) # For " slide " function
3 library ( lubridate ) # For changing dates to YMD format
4 library ( ggplot2 ) # For plotting
5
6 # ################################# ANN ####################################
7
8 # Reading cleaned data
9 df <- read.csv(" Rainfall _ clean .csv")

16



10 df1 <- read.csv(" Vandiperiyar _ clean .csv")
11 df2 <- read.csv(" Neeleswaram _ clean .csv")
12
13 # Changing column names
14 colnames (df)[2] <- " Rainfall "
15 colnames (df1)[2] <- " Discharge "; colnames (df1)[3] <- " Level "
16 colnames (df2)[2] <- " Discharge "; colnames (df2)[3] <- " Level "
17
18 # Making dates same in all three data sets
19 dates <- setdiff (df1$Dates , df2$ Dates )
20 dates <- c(dates , setdiff (df2$Dates , df1$ Dates ))
21 dates <- unique ( dates )
22 rej <- match (dates , df1$ Dates ); rej <- sort(rej)
23 df1 <- df1[-rej , ]
24 rej <- match (dates , df2$ Dates ); rej <- sort(rej)
25 df2 <- df2[-rej , ]
26 dates <- setdiff (df$Dates , df1$ Dates )
27 rej <- match (dates , df$ Dates ); rej <- sort(rej)
28 df <- df[-rej , ]
29
30 # Converting dates into YMD format
31 df$ Dates <- ymd(df$ Dates )
32 df1$ Dates <- ymd(df1$ Dates )
33 df2$ Dates <- ymd(df2$ Dates )
34
35 # Creating master data frame
36 temp <- df$ Dates
37 data <- data. frame (df$Rainfall , df1$Discharge , df1$Level , df2$Discharge , df2$ Level )
38 data <- data[-c(2191 , 4814 , 6186 , 6184) , ] # Removing outliers
39 temp <- temp[-c(2191 , 4814 , 6186 , 6184) ]
40
41 # Creating model
42 model <- keras _ model _ sequential () %>%
43 layer _ dense ( units = 64, activation = "relu") %>%
44 layer _ dropout (rate = 0.2) %>%
45 layer _ dense ( units = 32, activation = "relu") %>%
46 layer _ dropout (rate = 0.2) %>%
47 layer _ dense ( units = 1, activation = " linear ")
48
49 # Compiling model
50 model %>% compile (
51 optimizer = "adam",
52 loss = "mse",
53 metric = "mae")
54
55 # Summary
56 model %>% summary ()
57
58 # ################# One -day lag prediction ###################
59
60 data1 <- data
61
62 # " slide " function can be used to take leads
63 data1 <- slide (data1 , Var = "df2. Discharge ", slideBy = 1)
64 data1 <- slide (data1 , Var = "df2. Level ", slideBy = 1)
65 data1 <- na.omit( data1 )
66
67 # 1:5842 contains data from 1st June , 2000 to 31 st May , 2016
68 index <- 1:5842
69 datatrain = data1 [index , ]
70 datatest = data1 [-index , ]
71
72 # Scaling data between 0 and 1
73 max = apply ( data1 , 2 , max)
74 min = apply (data1 , 2 , min)
75 scaled = as.data. frame ( scale (data1 , center = min , scale = max - min))
76
77 # Splitting data for training and testing
78 train = scaled [ index , ]
79 test = scaled [- index , ]
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80
81 # ------------------------- DISCHARGE -----------------------#
82
83 # Converting data frame into matrix
84 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
85 ytrain <- as. matrix ( train [, c(6) ])
86 xtest = as. matrix (test[, c(1, 2, 4) ])
87 ytest = as. matrix (test[, c(6) ])
88
89 # Fitting model
90 history1 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.20)
91 scores = model %>% evaluate (xtest , ytest , verbose = 0)
92
93 # MAE and MSE (loss)
94 print ( scores )
95
96 # Predictions
97 predict _ Discharge1 = model %>% predict ( xtest )
98
99 # Un - scaling for converting back to the original range

100 predict _ Discharge1 = ( predict _ Discharge1 * (max( data1 $df2. Discharge1 ) - min( data1 $
df2. Discharge1 ))) + min( data1 $df2. Discharge1 )

101
102 # Plotting actual observations against predictions
103 plot( datatest $df2. Discharge1 , predict _ Discharge1 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
104 title (" Predicted discharge v/s Actual discharge : One -day lag")
105 abline (0, 1, col = " black ")
106
107 # Plotting " history1 "
108 plot( history1 )
109
110 # -------------------------- LEVEL -----------------------------------#
111
112 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
113 xtest = as. matrix (test[, c(1, 3, 5) ])
114 ytrain <- as. matrix ( train [c(7) ])
115 ytest = as. matrix (test[c(7) ])
116
117 history2 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
118 scores = model %>% evaluate (xtest , ytest , verbose = 0)
119
120 print ( scores )
121
122 plot( history2 )
123
124 predict _ Level1 = model %>% predict ( xtest )
125 predict _ Level1 = ( predict _ Level1 * (max( data1 $df2. Level1 ) - min( data1 $df2. Level1 )))

+ min( data1 $df2. Level1 )
126
127 plot( datatest $df2.Level1 , predict _Level1 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
128 title (" Predicted level v/s Actual level : One -day lag")
129 abline (0, 1, col = " black ")
130
131
132 # Visualizing actual observations against predictions for test data
133 dt <- data. frame (temp [5843:6395] , datatest $df2. Discharge1 , datatest $df2.Level1 ,

predict _ Discharge1 , predict _ Level1 )
134
135 colnames (dt)[1] <- " Dates "
136 colnames (dt)[2] <- " Discharge1 "
137 colnames (dt)[3] <- " Level1 "
138
139 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
140 ggplot (dt , aes(x = Dates )) +
141 geom_line(aes(y = Discharge1 , color = " Actual discharge ")) +
142 geom_line(aes(y = predict _ Discharge1 , color = " Predicted discharge ")) +

18



143 scale _ color _ manual ( values = colors ) +
144 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
145 ggtitle (" Discharge : One -day lag")
146
147 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
148 ggplot (dt , aes(x = Dates )) +
149 geom_line(aes(y = Level1 , color = " Actual level ")) +
150 geom_line(aes(y = predict _Level1 , color = " Predicted level ")) +
151 scale _ color _ manual ( values = colors ) +
152 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
153 ggtitle (" Level : One -day lag")
154
155
156 # ################# Two -days lag prediction ##################
157
158 data2 <- data
159 data2 <- slide (data2 , Var = "df2. Discharge ", slideBy = 2)
160 data2 <- slide (data2 , Var = "df2. Level ", slideBy = 2)
161 data2 <- na.omit( data2 )
162
163
164 # 1:5842 contains data from 1st June , 2000 to 31 st May , 2016
165
166 index <- 1:5842
167 datatrain = data2 [index , ]
168 datatest = data2 [-index , ]
169
170 max = apply ( data2 , 2 , max)
171 min = apply (data2 , 2 , min)
172 scaled = as.data. frame ( scale (data2 , center = min , scale = max - min))
173
174 train = scaled [ index , ]
175 test = scaled [- index , ]
176
177 # ---------------------------- DISCHARGE ---------------------------#
178
179 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
180 ytrain <- as. matrix ( train [, 6])
181 xtest = as. matrix (test[, c(1, 2, 4) ])
182 ytest = as. matrix (test[, 6])
183
184 history3 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
185 scores = model %>% evaluate (xtest , ytest , verbose = 0)
186
187 print ( scores )
188
189 plot( history3 )
190
191 ypred = model %>% predict ( xtest )
192 predict _ Discharge2 = ypred
193 predict _ Discharge2 = ( predict _ Discharge2 * (max( data2 $df2. Discharge2 ) - min( data2 $

df2. Discharge2 ))) + min( data2 $df2. Discharge2 )
194
195 plot( datatest $df2. Discharge2 , predict _ Discharge2 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
196 title (" Predicted discharge v/s Actual discharge : Two -days lag")
197 abline (0, 1, col = " black ")
198
199 # -------------------------- LEVEL -----------------------------------#
200
201 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
202 xtest = as. matrix (test[, c(1, 3, 5) ])
203 ytrain <- as. matrix ( train [, c(7) ])
204 ytest = as. matrix (test[, 7])
205
206
207 history4 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
208 scores = model %>% evaluate (xtest , ytest , verbose = 0)
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209
210 print ( scores )
211
212 plot( history4 )
213
214 ypred = model %>% predict ( xtest )
215 predict _ Level2 = ypred
216 predict _ Level2 = ( predict _ Level2 * (max( data2 $df2. Level2 ) - min( data2 $df2. Level2 )))

+ min( data2 $df2. Level2 )
217
218 plot( datatest $df2.Level2 , predict _Level2 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
219 title (" Predicted level v/s Actual level : Two -days lag")
220 abline (0, 1, col = " black ")
221
222
223 dt <- data. frame (temp [5843:6394] , datatest $df2. Discharge2 , datatest $df2.Level2 ,

predict _ Discharge2 , predict _ Level2 )
224
225 colnames (dt)[1] <- " Dates "
226 colnames (dt)[2] <- " Discharge2 "
227 colnames (dt)[3] <- " Level2 "
228
229 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
230 ggplot (dt , aes(x = Dates )) +
231 geom_line(aes(y = Discharge2 , color = " Actual discharge ")) +
232 geom_line(aes(y = predict _ Discharge2 , color = " Predicted discharge ")) +
233 scale _ color _ manual ( values = colors ) +
234 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
235 ggtitle (" Discharge : Two -days lag")
236
237 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
238 ggplot (dt , aes(x = Dates )) +
239 geom_line(aes(y = Level2 , color = " Actual level ")) +
240 geom_line(aes(y = predict _Level2 , color = " Predicted level ")) +
241 scale _ color _ manual ( values = colors ) +
242 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
243 ggtitle (" Level : Two -days lag")
244
245
246 # ################# Three -days lag prediction ###################
247
248 data3 <- data
249 data3 <- slide (data3 , Var = "df2. Discharge ", slideBy = 3)
250 data3 <- slide (data3 , Var = "df2. Level ", slideBy = 3)
251 data3 <- na.omit( data3 )
252
253 index <- 1:5842
254 datatrain = data3 [index , ]
255 datatest = data3 [-index , ]
256
257 max = apply ( data3 , 2 , max)
258 min = apply (data3 , 2 , min)
259 scaled = as.data. frame ( scale (data3 , center = min , scale = max - min))
260
261 train = scaled [ index , ]
262 test = scaled [- index , ]
263
264 # ---------------------------- DISCHARGE ---------------------------#
265
266 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
267 ytrain <- as. matrix ( train [, c(6) ])
268 xtest = as. matrix (test[, c(1, 2, 4) ])
269 ytest = as. matrix (test[, 6])
270
271 histroy5 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
272 scores = model %>% evaluate (xtest , ytest , verbose = 0)
273
274 print ( scores )
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275
276 plot( histroy5 )
277
278 ypred = model %>% predict ( xtest )
279 predict _ Discharge3 = ypred
280 predict _ Discharge3 = ( predict _ Discharge3 * (max( data3 $df2. Discharge3 ) - min( data3 $

df2. Discharge3 ))) + min( data3 $df2. Discharge3 )
281
282 plot( datatest $df2. Discharge3 , predict _ Discharge3 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
283 title (" Predicted discharge v/s Actual discharge : Three -days lag")
284 abline (0, 1, col = " black ")
285
286
287 # -------------------------- LEVEL -----------------------------------#
288
289 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
290 xtest = as. matrix (test[, c(1, 3, 5) ])
291 ytrain <- as. matrix ( train [, c(7) ])
292 ytest = as. matrix (test[, 7])
293
294 history6 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
295 scores = model %>% evaluate (xtest , ytest , verbose = 0)
296
297 print ( scores )
298
299 plot( history6 )
300
301 ypred = model %>% predict ( xtest )
302 predict _ Level3 = ypred
303 predict _ Level3 = ( predict _ Level3 * (max( data3 $df2. Level3 ) - min( data3 $df2. Level3 )))

+ min( data3 $df2. Level3 )
304
305 plot( datatest $df2.Level3 , predict _Level3 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
306 title (" Predcited level v/s Actual level : Three -days lag")
307 abline (0, 1, col = " black ")
308
309 dt <- data. frame (temp [5843:6393] , datatest $df2. Discharge3 , datatest $df2.Level3 ,

predict _ Discharge3 , predict _ Level3 )
310
311 colnames (dt)[1] <- " Dates "
312 colnames (dt)[2] <- " Discharge3 "
313 colnames (dt)[3] <- " Level3 "
314
315 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
316 ggplot (dt , aes(x = Dates )) +
317 geom_line(aes(y = Discharge3 , color = " Actual discharge ")) +
318 geom_line(aes(y = predict _ Discharge3 , color = " Predicted discharge ")) +
319 scale _ color _ manual ( values = colors ) +
320 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
321 ggtitle (" Discharge : Three -days lag")
322
323 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
324 ggplot (dt , aes(x = Dates )) +
325 geom_line(aes(y = Level3 , color = " Actual level ")) +
326 geom_line(aes(y = predict _Level3 , color = " Predicted level ")) +
327 scale _ color _ manual ( values = colors ) +
328 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
329 ggtitle (" Level : Three -days lag")
330
331 plot( history6 )

Code Snippet 3.1: Predicting river level and discharge for one-day, two-days and
three-days lag using ANN
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3.3.4.3 Convolutional Neural Network

Convolutional Neural Network or CNN comprises of multiple layers. The first one is
the convolution layer which extracts high-level features. Next is the pooling layer,
which reduces the spatial size of the convolved element with the aim of dimension-
ality reduction. The convolution and pooling layers are followed by a dense, fully
connected layer used for interpreting the extracted features. A flattened layer is
used between the dense layer and convolution layer for reducing feature maps to a
one-dimensional vector [12].

A one-dimensional or 1D CNN is a CNN model that operates over a one-dimensional
sequence. 1D CNN can offer a fast alternative to RNN for time series forecasting
[13]. It can be implemented using "layer_conv_1d" function of the "keras" pack-
age in R. It inputs three-dimensional or 3D (samples, time, features) tensors and
returns similar 3D tensors. Data from "2000-Jun-01" to "2016-May-31" was selected
for training. The rest was for testing.

Model structure -

For predicting river discharge (m3/s) -

1. Input parameters - Rainfall (mm), discharge at Vandiperiyar station (m3/s)
and discharge at Neeleeswaram station (m3/s)

2. Output parameters - Discharge at Neeleeswaram station (m3/s) with one-day,
two-days and three-days lag

For predicting river level (m) -

1. Input parameters - Rainfall (mm), level at Vandiperiyar station (m) and level
at Neeleeswaram station (m)

2. Output parameters - Level at Neeleeswaram station (m) with one-day, two-
days and three-days lag

Training parameters -

1. Number of 1D convolutional layers = 1

2. Number of filters = 64

3. Kernel size = 2

4. Input shape = (3, 1)

5. Number of dense layers = 3

6. Units used = (64, 32, 1)

7. Activation function = relu
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8. Dropout rate = 0.2

9. Optimizer = adam

10. Pool size = 2

11. Epochs = 100

12. Batch size = 10

1 library ( keras ) # For CNN
2 library ( DataCombine ) # For " slide " function
3 library ( lubridate ) # For changing dates to YMD format
4 library ( ggplot2 ) # For plotting
5
6 # ################################# CNN ####################################
7
8 # Reading cleaned data
9 df <- read.csv(" Rainfall _ clean .csv")

10 df1 <- read.csv(" Vandiperiyar _ clean .csv")
11 df2 <- read.csv(" Neeleswaram _ clean .csv")
12
13 # Changing column names
14 colnames (df)[2] <- " Actual "
15 colnames (df1)[2] <- " Discharge "; colnames (df1)[3] <- " Level "
16 colnames (df2)[2] <- " Discharge "; colnames (df2)[3] <- " Level "
17
18 # Making dates same in all three data sets
19 dates <- setdiff (df1$Dates , df2$ Dates )
20 dates <- c(dates , setdiff (df2$Dates , df1$ Dates ))
21 dates <- unique ( dates )
22 rej <- match (dates , df1$ Dates ); rej <- sort(rej)
23 df1 <- df1[-rej , ]
24 rej <- match (dates , df2$ Dates ); rej <- sort(rej)
25 df2 <- df2[-rej , ]
26 dates <- setdiff (df$Dates , df1$ Dates )
27 rej <- match (dates , df$ Dates ); rej <- sort(rej)
28 df <- df[-rej , ]
29
30 # Converting dates into YMD format
31 df$ Dates <- ymd(df$ Dates )
32 df1$ Dates <- ymd(df1$ Dates )
33 df2$ Dates <- ymd(df2$ Dates )
34
35 # Creating master data frame
36 temp <- df$ Dates
37 data <- data. frame (df$Actual , df1$Discharge , df1$Level , df2$Discharge , df2$ Level )
38 data <- data[-c(2191 , 4814 , 6186 , 6184) , ] # Removing outliers
39 temp <- temp[-c(2191 , 4814 , 6186 , 6184) ]
40
41 # Creating model
42 model <- keras _ model _ sequential () %>%
43 layer _conv_1d( filters = 64, kernel _size = 2, input _ shape = c(3, 1) , activation =

"relu") %>%
44 layer _max_ pooling _1d(pool_size = 2) %>%
45 layer _ flatten () %>%
46 layer _ dense ( units = 64, activation = "relu") %>%
47 layer _ dropout (rate = 0.2) %>%
48 layer _ dense ( units = 32, activation = "relu") %>%
49 layer _ dropout (rate = 0.2) %>%
50 layer _ dense ( units = 1, activation = " linear ")
51
52 # Compiling model
53 model %>% compile (
54 optimizer = "adam",
55 loss = "mse",
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56 metric = "mae")
57
58 # Summary
59 model %>% summary ()
60
61 # ################# One -day lag prediction ###################
62
63 data1 <- data
64
65 # " slide " function can be used to take leads
66 data1 <- slide (data1 , Var = "df2. Discharge ", slideBy = 1)
67 data1 <- slide (data1 , Var = "df2. Level ", slideBy = 1)
68 data1 <- na.omit( data1 )
69
70
71 # 1:5844 contains data from 1st June , 2000 to 31 st May , 2016
72 index <- 1:5842
73 datatrain = data1 [index , ]
74 datatest = data1 [-index , ]
75
76 # Scaling data between 0 and 1
77 max = apply ( data1 , 2 , max)
78 min = apply (data1 , 2 , min)
79 scaled = as.data. frame ( scale (data1 , center = min , scale = max - min))
80
81 # Splitting data for training and testing
82 train = scaled [ index , ]
83 test = scaled [- index , ]
84
85 # ------------------------- DISCHARGE -----------------------#
86
87 # Converting data frame into matrix
88 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
89 ytrain <- as. matrix ( train [, c(6) ])
90 xtest = as. matrix (test[, c(1, 2, 4) ])
91 ytest = as. matrix (test[, c(6) ])
92
93 # Transforming 2D matrix into 3D matrix
94 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
95 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
96
97 # Fitting model
98 history1 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.20)
99 scores = model %>% evaluate (xtest , ytest , verbose = 0)

100
101 # MAE and MSE (loss)
102 print ( scores )
103
104 # Plotting " history1 "
105 plot( history1 )
106
107 # Predictions
108 predict _ Discharge1 = model %>% predict ( xtest )
109
110 # Un - scaling for converting back to the original range
111 predict _ Discharge1 = ( predict _ Discharge1 * (max( data1 $df2. Discharge1 ) - min( data1 $

df2. Discharge1 ))) + min( data1 $df2. Discharge1 )
112
113 # Plotting actual observations against predictions
114 plot( datatest $df2. Discharge1 , predict _ Discharge1 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
115 title (" Predicted discharge v/s Actual discharge : One -day lag")
116 abline (0, 1, col = " black ")
117
118
119 # -------------------------- LEVEL -----------------------------------#
120
121 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
122 xtest = as. matrix (test[, c(1, 3, 5) ])
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123 ytrain <- as. matrix ( train [c(7) ])
124 ytest = as. matrix (test[c(7) ])
125
126 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
127 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
128
129 history2 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
130 scores = model %>% evaluate (xtest , ytest , verbose = 0)
131
132 print ( scores )
133
134 plot( history2 )
135
136 predict _ Level1 = model %>% predict ( xtest )
137 predict _ Level1 = ( predict _ Level1 * (max( data1 $df2. Level1 ) - min( data1 $df2. Level1 )))

+ min( data1 $df2. Level1 )
138
139 plot( datatest $df2.Level1 , predict _Level1 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
140 title (" Predicted level v/s Actual level : One -day lag")
141 abline (0, 1, col = " black ")
142
143 # Visualizing actual observations against predictions for test data
144 dt <- data. frame (temp [5843:6395] , datatest $df2. Discharge1 , datatest $df2.Level1 ,

predict _ Discharge1 , predict _ Level1 )
145
146 colnames (dt)[1] <- " Dates "
147 colnames (dt)[2] <- " Discharge1 "
148 colnames (dt)[3] <- " Level1 "
149
150 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
151 ggplot (dt , aes(x = Dates )) +
152 geom_line(aes(y = Discharge1 , color = " Actual discharge ")) +
153 geom_line(aes(y = predict _ Discharge1 , color = " Predicted discharge ")) +
154 scale _ color _ manual ( values = colors ) +
155 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
156 ggtitle (" Discharge : One -day lag")
157
158 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
159 ggplot (dt , aes(x = Dates )) +
160 geom_line(aes(y = Level1 , color = " Actual level ")) +
161 geom_line(aes(y = predict _Level1 , color = " Predicted level ")) +
162 scale _ color _ manual ( values = colors ) +
163 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
164 ggtitle (" Level : One -day lag")
165
166
167 # ################# Two -days lag prediction ##################
168
169 data2 <- data
170 data2 <- slide (data2 , Var = "df2. Discharge ", slideBy = 2)
171 data2 <- slide (data2 , Var = "df2. Level ", slideBy = 2)
172 data2 <- na.omit( data2 )
173
174 index <- 1:5842
175 datatrain = data2 [index , ]
176 datatest = data2 [-index , ]
177
178 max = apply ( data2 , 2 , max)
179 min = apply (data2 , 2 , min)
180 scaled = as.data. frame ( scale (data2 , center = min , scale = max - min))
181
182 train = scaled [ index , ]
183 test = scaled [- index , ]
184
185 # ---------------------------- DISCHARGE ---------------------------#
186
187 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
188 ytrain <- as. matrix ( train [, 6])
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189 xtest = as. matrix (test[, c(1, 2, 4) ])
190 ytest = as. matrix (test[, 6])
191
192 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
193 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
194
195 history3 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
196 scores = model %>% evaluate (xtrain , ytrain , verbose = 0)
197
198 print ( scores )
199
200 plot( history3 )
201
202 ypred = model %>% predict ( xtest )
203 predict _ Discharge2 = ypred
204 predict _ Discharge2 = ( predict _ Discharge2 * (max( data2 $df2. Discharge2 ) - min( data2 $

df2. Discharge2 ))) + min( data2 $df2. Discharge2 )
205
206 plot( datatest $df2. Discharge2 , predict _ Discharge2 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
207 title (" Predicted discharge v/s Actual discharge : Two -days lag")
208 abline (0, 1, col = " black ")
209
210 # -------------------------- LEVEL -----------------------------------#
211
212 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
213 xtest = as. matrix (test[, c(1, 3, 5) ])
214 ytrain <- as. matrix ( train [, c(7) ])
215 ytest = as. matrix (test[, 7])
216
217 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
218 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
219
220 history4 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
221 scores = model %>% evaluate (xtrain , ytrain , verbose = 0)
222
223 print ( scores )
224
225 plot( history4 )
226
227 ypred = model %>% predict ( xtest )
228 predict _ Level2 = ypred
229 predict _ Level2 = ( predict _ Level2 * (max( data2 $df2. Level2 ) - min( data2 $df2. Level2 )))

+ min( data2 $df2. Level2 )
230
231 plot( datatest $df2.Level2 , predict _Level2 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
232 title (" Predicted level v/s Actual level : Two -days lag")
233 abline (0, 1, col = " black ")
234
235 dt <- data. frame (temp [5843:6394] , datatest $df2. Discharge2 , datatest $df2.Level2 ,

predict _ Discharge2 , predict _ Level2 )
236
237 colnames (dt)[1] <- " Dates "
238 colnames (dt)[2] <- " Discharge2 "
239 colnames (dt)[3] <- " Level2 "
240
241 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
242 ggplot (dt , aes(x = Dates )) +
243 geom_line(aes(y = Discharge2 , color = " Actual discharge ")) +
244 geom_line(aes(y = predict _ Discharge2 , color = " Predicted discharge ")) +
245 scale _ color _ manual ( values = colors ) +
246 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
247 ggtitle (" Discharge : Two -days lag")
248
249 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
250 ggplot (dt , aes(x = Dates )) +
251 geom_line(aes(y = Level2 , color = " Actual level ")) +
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252 geom_line(aes(y = predict _Level2 , color = " Predicted level ")) +
253 scale _ color _ manual ( values = colors ) +
254 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
255 ggtitle (" Level : Two -days lag")
256
257
258 # ################# Three -days lag prediction ###################
259
260 data3 <- data
261 data3 <- slide (data3 , Var = "df2. Discharge ", slideBy = 3)
262 data3 <- slide (data3 , Var = "df2. Level ", slideBy = 3)
263 data3 <- na.omit( data3 )
264
265 index <- 1:5842
266 datatrain = data3 [index , ]
267 datatest = data3 [-index , ]
268
269 max = apply ( data3 , 2 , max)
270 min = apply (data3 , 2 , min)
271 scaled = as.data. frame ( scale (data3 , center = min , scale = max - min))
272
273 train = scaled [ index , ]
274 test = scaled [- index , ]
275
276 # ---------------------------- DISCHARGE ---------------------------#
277
278 xtrain <- as. matrix ( train [, c(1, 2, 4) ])
279 ytrain <- as. matrix ( train [, c(6) ])
280 xtest = as. matrix (test[, c(1, 2, 4) ])
281 ytest = as. matrix (test[, 6])
282
283 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
284 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
285
286 history5 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
287 scores = model %>% evaluate (xtrain , ytrain , verbose = 0)
288
289 print ( scores )
290
291 plot( history5 )
292
293 ypred = model %>% predict ( xtest )
294 predict _ Discharge3 = ypred
295 predict _ Discharge3 = ( predict _ Discharge3 * (max( data3 $df2. Discharge3 ) - min( data3 $

df2. Discharge3 ))) + min( data3 $df2. Discharge3 )
296
297 plot( datatest $df2. Discharge3 , predict _ Discharge3 , col=’blue ’, pch =16 , ylab = "

Predicted Discharge (in m^3/s)", xlab = " Actual Discharge (in m^3/s)")
298 title (" Predicted discharge v/s Actual discharge : Three -days lag")
299 abline (0, 1, col = " black ")
300
301 # -------------------------- LEVEL -----------------------------------#
302
303 xtrain <- as. matrix ( train [, c(1, 3, 5) ])
304 xtest = as. matrix (test[, c(1, 3, 5) ])
305 ytrain <- as. matrix ( train [, c(7) ])
306 ytest = as. matrix (test[, 7])
307
308 xtrain = array (xtrain , dim = c(nrow( xtrain ), 3, 1))
309 xtest = array (xtest , dim = c(nrow( xtest ), 3, 1))
310
311 history6 <- model %>% fit(xtrain , ytrain , epochs = 100 , batch _size = 10, verbose =

1, validation _ split = 0.2)
312 scores = model %>% evaluate (xtrain , ytrain , verbose = 0)
313
314 print ( scores )
315
316 plot( history6 )
317
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318 ypred = model %>% predict ( xtest )
319 predict _ Level3 = ypred
320 predict _ Level3 = ( predict _ Level3 * (max( data3 $df2. Level3 ) - min( data3 $df2. Level3 )))

+ min( data3 $df2. Level3 )
321
322 plot( datatest $df2.Level3 , predict _Level3 , col=’blue ’, pch =16 , ylab = " Predicted

Level (in m)", xlab = " Actual Level (in m)")
323 title (" Predcited level v/s Actual level : Three -days lag")
324 abline (0, 1, col = " black ")
325
326 dt <- data. frame (temp [5843:6393] , datatest $df2. Discharge3 , datatest $df2.Level3 ,

predict _ Discharge3 , predict _ Level3 )
327
328 colnames (dt)[1] <- " Dates "
329 colnames (dt)[2] <- " Discharge3 "
330 colnames (dt)[3] <- " Level3 "
331
332 colors <- c(" Actual discharge " = "red", " Predicted discharge " = "navy")
333 ggplot (dt , aes(x = Dates )) +
334 geom_line(aes(y = Discharge3 , color = " Actual discharge ")) +
335 geom_line(aes(y = predict _ Discharge3 , color = " Predicted discharge ")) +
336 scale _ color _ manual ( values = colors ) +
337 labs(x = " Dates ", y = " Discharge (in m^3/s)", color = " Legend ") +
338 ggtitle (" Discharge : Three -days lag")
339
340 colors <- c(" Actual level " = "red", " Predicted level " = "navy")
341 ggplot (dt , aes(x = Dates )) +
342 geom_line(aes(y = Level3 , color = " Actual level ")) +
343 geom_line(aes(y = predict _Level3 , color = " Predicted level ")) +
344 scale _ color _ manual ( values = colors ) +
345 labs(x = " Dates ", y = " Level (in m)", color = " Legend ") +
346 ggtitle (" Level : Three -days lag")

Code Snippet 3.2: Predicting river level and discharge for one-day, two-days and
three-days lag using 1D CNN

3.3.5 Results
Model performance evaluation was based on two parameters, namely MSE (Mean
Squared Error) and Mean Absolute Error (MAE).

MSE is defined as follows -

MSE = 1
n

Σn
i=1(Pi −Oi)2 (3.2)

where Pi and Oi are the predicted and observed values, respectively.

MAE is defined as follows -

MAE = 1
n

Σn
i=1|Pi −Oi| (3.3)

where Pi and Oi are the predicted and observed values, respectively.
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3.3.5.1 Artificial Neural Network

Table 3.1 contains the evaluation parameters and their corresponding values for river
discharge and level.

Discharge Level
MSE MAE MSE MAE

One-day lag 0.000802 0.01931 0.000184 0.02456
Two-day lag 0.0011 0.0228 0.00277 0.03251
Three-day lag 0.00152 0.0284 0.00317 0.0362

Table 3.1: Evaluation metrics for river discharge and level

Following sections contain six plots corresponding to each forecasting case. Among
them, the first two are scatter plots between predicted and actual values of river
discharge and level in which the data points near to (or on) the 45-degree line corre-
spond to the most accurate predictions. The next two plots represent the actual and
predicted time series data. Here, the section of the plot with the most overlapping
corresponds to the most accurate predictions. The last two graphically display the
change in values of MSE and MAE with epoch.

One day lag prediction

Figure 3.10: Predicted discharge versus Actual discharge
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Figure 3.11: Predicted level versus actual level

Figure 3.12: Test data - Discharge one-day lag
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Figure 3.13: Test data - Level one-day lag

Figure 3.14: Evaluation metric versus epoch - Discharge one-day lag
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Figure 3.15: Evaluation metric versus epoch - Level one-day lag

Two days lag prediction

Figure 3.16: Predicted discharge versus actual discharge
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Figure 3.17: Predicted level versus actual level

Figure 3.18: Test data - Discharge two-days lag
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Figure 3.19: Test data - Level two-days lag

Figure 3.20: Evaluation metric versus epoch - Discharge two-days lag
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Figure 3.21: Evaluation metric versus epoch - Level two-days lag

Three days lag prediction

Figure 3.22: Predicted discharge versus actual discharge
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Figure 3.23: Predicted level versus actual level

Figure 3.24: Test data - Discharge three-days lag
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Figure 3.25: Test data - Level three-days lag

Figure 3.26: Evaluation metric versus epoch - Discharge three-days lag
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Figure 3.27: Evaluation metric versus epoch - Level three-days lag

3.3.5.2 Convolutional Neural Network

Table 3.2 contains the evaluation parameters and their corresponding values for river
discharge and level.

Discharge Level
MSE MAE MSE MAE

One-day lag 0.000872 0.02179 0.00194 0.0268
Two-day lag 0.00124 0.02581 0.00270 0.03135
Three-day lag 0.00138 0.0264 0.0032 0.0370

Table 3.2: Evaluation metrics for one-day lagged river discharge and level

Similar to ANN, here also the following sections contain six plots corresponding to
each forecasting case. Among them, the first two are scatter plots between predicted
and actual values of river discharge and level in which the data points near to (or
on) the 45-degree line correspond to the most accurate predictions. The next two
plots represent the actual and predicted time series data. Here, the section of the
plot with the most overlapping corresponds to the most accurate predictions. The
last two graphically display the change in values of MSE and MAE with epoch.

One day lag prediction
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Figure 3.28: Predicted discharge versus actual discharge

Figure 3.29: Predicted level versus actual level
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Figure 3.30: Test data - Discharge one-day lag

Figure 3.31: Test data - Level one-day lag
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Figure 3.32: Evaluation metric versus epoch - Discharge one-day lag

Figure 3.33: Evaluation metric versus epoch - Level one-day lag
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Two days lag prediction

Figure 3.34: Predicted discharge versus actual discharge

Figure 3.35: Predicted level versus actual level
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Figure 3.36: Test data - Discharge two-days lag

Figure 3.37: Test data - Level two-days lag
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Figure 3.38: Evaluation metric versus epoch - Discharge two-days lag

Figure 3.39: Evaluation metric versus epoch - Level two-days lag
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Three days lag prediction

Figure 3.40: Predicted discharge versus actual discharge

Figure 3.41: Predicted level versus actual level
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Figure 3.42: Test data - Discharge three-days lag

Figure 3.43: Test data - Level three-days lag
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Figure 3.44: Evaluation metric versus epoch - Discharge three-days lag

Figure 3.45: Evaluation metric versus epoch - Level three-days lag
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Chapter 4

Conclusion

The projects completed during the fellowship have contributed towards the promo-
tion of open source software, i.e. R. The tutorial scripts developed by each fellow
will help to understand various R programming concepts with examples via audiovi-
sual media. The river level and discharge prediction research project demonstrated
the importance of data-driven models in predicting natural phenomenon. ANN per-
formed slightly better than CNN in all three forecasting cases. Accurate forecasts
may help people living in flood-prone areas by providing them with more time to
evacuate during an emergency.

The FOSSEE fellowship was a great learning experience. Every fellow gained new
skills and knowledge. The tasks performed gave an insight into a professional work
environment. Fellows also learned the different facets of working within an organi-
zation. Also, the objective of contributing back to society via open source was a big
motivator. In a nutshell, the fellowship taught each fellow work ethics, commitment,
and the importance of contributing back to society besides technical skills.
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