
1

Summer Fellowship Report

On

Connecting Yaksh and FOSSEE Workshop Site

Submitted by

Vivek Kumar

Under the guidance of

Prof. Prabhu Ramachandran, Department of
Aerospace Engineering IIT Bombay

Prof. Kannan M. Moudgalya, Department of Chemical
Engineering, IIT Bombay

June 20, 2020

2

Acknowledgment

It was a wonderful experience working as a FOSSEE Python remote intern from
April 2020 to June 2020. I could discover my true potential as a professional. I
believe, this exposure and lessons that I have learnt here will never come short
for my career growth.
My task would not have been accomplished successfully without the contribution
and collaboration of others.
My sincere gratitude:

To Prof. Kannan M. Moudgalya, Department of Chemical Engineering, IIT
Bombay), the PI of FOSSEE, for providing us the opportunity to do an
internship within the organization.

To Prof. Prabhu Ramchandran, Department of Aerospace Engineering, IIT
Bombay our internship guide for his encouragement and guidance.

To the Senior Project Manager, FOSSEE, Mrs. Usha Viswanathan
along with the FOSSEE team at IIT Bombay. With their patience and
openness they created an enjoyable working environment.

To the Project mentor Mr. P. Aditya for believing in my capability to
complete the task in time. His open-mindedness and out-of-box thinking
encouraged me to look for better ideas for solutions. Without his help I
couldn’t have easily corrected my mistakes and learnt things. His valuable
time spent on teaching me things is unforgettable. I would also like to
thank Mr. Ankit J and Mr. Akash Chavan for being there as a mentor
everytime in need.

To my fellow colleague, Prathamesh Shiralkar with whom I have
completed the fellowship. We experienced great things together and
learnt a lot.

To all of you, I extend my deepest gratitude.

3

Contents

1 Introduction 4
 1.1 Vision . 4
 1.2 Approach . 4
2 Requirements and relevant Solutions 5

3 Implementation 7

 3.1 Used Tech Stack: . 7
 3.2

3.3
3.4
3.5
3.6
3.7

First Phase .
Second Phase .
Third Phase .
Fourth Phase .
Fifth Phase .
Final Phase .

7
8
8
8
9
10

4 Further Improvements 11

5 Resources 12

4

Chapter 1
Introduction

Yaksh is an Online Test Interface for creating various courses and conducting
online programming quizzes. It supports various programming languages like :-
C, C++, Python and simple Bash. Users can solve any questions by using these
languages. Yaksh uses "test cases" to test the implementations of the students.
It also supports simple multiple choice questions and le uploads so that users
can easily submit their code.

FOSSEE workshop website is home for all workshops conducted in association
with FOSSEE across the country. It facilitates creating of workshops by the
instructor and the same can be approved by the admin and on success the
workshop takes place.

Each workshop has tutorial files linked with it which the instructor uses during
workshop hours. The thing that we wanted to improve on was to have a
systematic approach of creating a course corresponding to each workshop. For
each workshop there will be a corresponding json file for tutorials. We need a
way to fetch all the upcoming workshop details and create respective courses.

1.1 Vision

An automated system to connect FOSSEE workshop and Yaksh website.

1.2 Approach

1. Create a Post request API handler on Yaksh website that accepts the
formatted data and create new courses.

2. Test the above POST API using custom python script and JSON data.

3. Use a Scheduler service to automate the task to fetch data from Workshop

site at a particular time everyday(12 PM) and create courses on Yaksh site
through above API.

4. Create an intermediary app to run periodic tasks to fetch data from the

Workshop site and create post requests to create new courses on Yaksh
website

5

Chapter 2
Requirements and relevant Solutions

Requirements:

1. The first requirement was to have a POST API handler that can take the JSON
formatted data and create a new course on Yaksh website from the given data.

2. The second requirement was to get the above JSON formatted date from the
workshop site as API request.

3. Third requirement was to have an intermediary app where both of above things
can happen seamlessly.

4. The fourth and most important requirement was to have a scheduler that can call
the above task periodically, in order to accommodate the new workshop added on to
the FOSSEE workshop site and create new courses correspondingly.

5. To cache the workshop data received so that we don’t necessarily create
duplicate courses for a given workshop.

6. To Map Workshop user profile and Yaksh user profile.

Solutions:

1. Created POST API handler using Django Rest Framework(DRF) which accepts
formatted JSON data and creates new course and returns the newly created course
data along with 201 HTTP status code.

2. The second solution was covered by my fellow colleague Prathamesh Shiralkar,
where I helped him with the required fields in the JSON formatted response.

3. The third blockhead was overcome by creating a new project “taskrunner”, a
Django based project that with the help of “requests” library in Python, calls the
above API end-points.

4. The fourth solution was suggested by the project mentor Mr. P. Aditya, we used
“celery” library in Python that helps to schedule various tasks. We created a task that
is scheduled to run at 12PM everyday. It first fetches the data from the FOSSEE
workshop site and on successfully receiving the data, it creates a POST request to
Yaksh API handler to create a new course based on the given data.

6

5. We used a separate model “WorkshopCached” to store the workshop id and the
status, if the POST API call to Yaksh site goes well we update the status to
1(Success), else to 2. And everytime we receive data from FOSSEE workshop site
we first check the status in WorkshopCached model and if present and status is 1,
we continue with rest of the data.

6. This step was necessary as the username on both the platforms might not be the
same for a given user, so we added a new model “UserMap”, that stores the
information related to user name mapping across both the platforms.

7

Chapter 3
Implementation

3.1 Used Technology

● Django
● Django Rest Framework
● Requests
● Celery
● JSON
● Postman
● Travis CI

3.2 First Phase

● The first phase of the implementation went into learning about interacting with
Sqlite database with Python. Wrote a custom serializer that reads a Sqlite file
and converts the data in Python Objects.

● This was necessary as we were about to create the POST API handler for the

Yaksh website that receives the formatted JSON data and create a new
course based on that.

8

3.3 Second Phase

● In the second phase of the internship, I started working on creating the POST
API handler for the Yaksh website, created serializers that serializes a Course
into corresponding LearningModules, LearningUnits, Quiz and Lessons.

● Once the serializer part was over, I worked on creating a view that handles

the POST request, gets the data and creates a new course and returns the
newly created course data and HTTP 201 response code.

3.4 Third Phase

● Once the POST API handler was over, I wrote a custom Python script using
requests and JSON module that tests the above functionality. This was a
necessary step to ensure successful implementation of the API handler to
create new courses.

● Tested the above API with Postman too once the Python Script check was
successful.

3.5 Fourth Phase

● The Yaksh API part was final by this time, and now helped my colleague
Prathamesh Shiralkar in creating the workshop API end-point to get new
workshop data that will be used to create new courses on Yaksh site.

● Tested the above end-point with Postman before moving forward.

9

3.6 Fifth Phase

● Started working on a new Django App ​taskrunner​ from scratch to
connectWorkshop website and Yaksh website.

● The requirement was to implement a task service that can be run periodically

allowing fetching of new workshop data from the FOSSEE workshop site and
creating POST requests on Yaksh API endpoint to create new courses.

● Used Celery module in Python to create periodic tasks.

● Added periodic tasks to retrieve all the accepted workshops and create

corresponding courses onYaksh website.

● Added two new models in the app to store the workshop id and the status,
and a model to store username for both Workshop and Yaksh website.

10

3.7 Final Phase

● Tested all the 3 services(Retrieve the new workshop data from the Workshop
API, create POST request to Yaksh website, run the task periodically).

● Wrote test cases for the Yaksh POST API to test new course creation
features.

11

Further Improvements

Despite working heavily on making things right from every aspect, there are few
things that can be improved further.

1. The Yaksh POST API end-point is open authenticated(no authentication is
required to post data to the end-point), which can be improved for security
and for this DRF default authentication, Token or OAuth can be used.

2. The Workshop GET API end-point is also open authenticated and data can be

accessed by anyone with the URL, which can be protected similarly for better
security.

12

Reference

Django Rest Framework- https://django-rest-framework.org/

Serializers in DRF-

https://www.django-rest-framework.org/api-guide/serializers/

Celery Documentation-

https://docs.celeryproject.org/en/stable/getting-started/introductio

n.html

Requests module- https://requests.readthedocs.io/en/master/

