r

L DD, ~
e t t e r

e 1 n

d u c¢c a t i o

Summer Fellowship
Report

on

Chemical PFD Tool

Sumit Sahu

Under the guidance of
Prof. Kannan Moudgalya

Department of Chemical Engineering

FOSSEE, Python
[I'T Bombay

Acknowledgement

[would like to take this opportunity to express my greatest grati-
tude to mentor, Mr. Pravin Kumar Dalve for guiding, supporting
and helping me in every possible way. I was extremely fortunate to
have him as my mentor as he provided insightful solutions to prob-
lems faced by us thus contributing immensely towards the comple-
tion of this project. I would like to thank FOSSEE Team and II'T
Bombay for giving me this opportunity and providing a platform to
exhibit our skills. T would also like to express our deepest gratitude
to the faculty of my collage for giving me an opportunity to be a
part of this fellowship.

Contents

, Introduction 3
o Approach oo 3
. Technology Stack 5
2.1 Python ... 5
2.2 PyQt ... 5
2.3 FbS ... 5
2.4 Glt ... 6
s Implementation 7
51 Unit Operations 7
3o Connecting Line 7
3.3 Line Gl"ip .. 7
sa o1ze GUID. ... 7
3.5 Text Label ... 8
. Features 9
w1 Feature of line ... 9
1.2 Feature of Component 10
4.3 CELHV&S ... 11
s 1o Do | 12
s1 Line starting from line 19
s2 Preparing class entries 19

Chapter 1

Introduction

In Chemical process flow diagram tool we need components and
lines connecting them. Component are created as QGraphicsSvgltem
passing svg file of component.

1.1 Approach

We have used the python language to create and system involv-
ing an object-oriented approach to each of the components, their
connections and defining properties of each of them. Our primary
graphical view and UI was built using PyQt5 which is a python
wrapper library over the C/C++ Qt framework. The GUI empow-
ers user to select component from a wide database by searching its
name . Component is rendered on canvas using svg(scable vector
graphics) files. For connecting lines between different components,
grips are provided to each component according to their shape.User
can connect line by simply connecting grips.If connecting part is
line then user grip is rectangular else circular.

[temLabel(QGraphicsTextltem)

+mouseDoubleClickEvent(event)
+ocusOutEvent(event)
+_Qetstate ()

+_ sefstaie_ (self, dici)

Nodeltem{QGraphicsSvgltem)

m_type : sir

m_renderer : QSvgRenderer
width -int

height iint

lineGripltems = LineGripltem]]
sizeGripitems = SizeGripltem[]
Iabel ItemLabel

LineGripltem(QGraphicsPathitem)

+boundingRect()
+Daintipainter, option, widget)
+fesize(index, movement)
+addGripltem()
+UpdateLineGripltem()
+UpdateSizeGriptem()
+itemChange(change, value)
+hoverEnterEvent(eveni)
+hoverl eaveEventeveni)
+showGripltem()
+hideGripltem)
+contexiMenuEvent(eveni)
+_Qetstate ()
+_seletate_(self dict)

SizeGripttem(QGraphicsPathiem)

#_direction
+m_index:int

+direction()

+UpdatePath()
+UpdatePosition()

+point index)
+hoverEnterEvent(eveni)
+hoverLeaveEvent(eveni)
+itemChange(change, valug)
+mouseReleaseEvent(event)
+show()

+hide()

0.t

+M_indexint
+position: QP ointF
m_location
+sizecint
+empLine Line
+ines : Line[]

LineLabel(QGraphicsTextitem)

+indexint
+gapint
+ling - QGraphicsLingliem

+paint(painter, opfion, widget)
+ipdzteLabel()

+esetPos()

+temChange(change, valug)
+ipdateGap()

+ipdateLine()
+mouseDoubleClickEvent(vent)
+ocusQutEventevent)

+_ (elstate_()
+__sefstate(self dict)

1.#

Line{QGraphicsPathitem)

+DreviousHovereditem - QGraphicslie

+m_location)

+3hape()

+paint(painter, option, widgef)
+itemChange(change, value)
+ipdatePosition()
+mousePressEvent(event)
+mouseMoveEvent(event)
+mouseReleaseEvent(eveni)
+3how()

+hide()

0.}

startPaint : QPointF
endPoint : QPoiniF

seff points - QPoiniF]]
stariGripltem : LineGripltem
endGripitem : LineGripltem
m_grabbers : Grabber|]
refLine : Line

refindes - int

commonPathsCenters = QPointF[]

midLings = Ling[]
|abel = LineLabel]
startGap :int
endGap int

Grabber{QGraphicsPathitem)

+boundingRect))
+advance(phase int)
+paint(painter, option, widget)
+(reatePath()

+ipdatePaih()
+ipdztePoints()

+3hape()
+movePoints(index, movement)
+adGrabber()
+ipdateGrabber()
+emChange(change, valug)
+ipdzteLine(endPoini=None)
+updateMidLines()
+showGriplem()
+hideGriplem()
+setStartGripitem(item)
+selEndGripitem(tem)
+contextMenuEvent(event)

+_ (elstate_()
+__sefstate(self dict)

0.

+m_annotation_item Lina
+m_indexint

+direction

+penQPen
+orush:QBrush

+boundingRect()

+3hape()

+paint{painter, option, widget)
+iemChange(change, valug)
+hoverEnterEvent(event)
+hoverLeaveEvent(event)
+show()

+hide()

Chapter 2

Technology Stack

The technologies that we used for the development of the GUI
Software.Following are the technology stack we have use:

2.1 Python

Python is an interpreted, high-level, general-purpose programming
language. Created by Guido van Rossum and first released in 1991,
Python’s design philosophy emphasizes code readability with its
notable use of significant whitespace.

2.2 PyQt

PyQt is a Python binding of the cross-platform GUI toolkit Qt, im-
plemented as a Python plug-in. PyQt is free software developed by
the British firm Riverbank Computing. We used Latest version of
PyQt i.e PyQt5. PyQt5 is a comprehensive set of Python bindings
for Qt v5. It is implemented as more than 35 extension modules
and enables Python to be used as an alternative application devel-

opment language to C++ on all supported platforms including iOS
and Android.

2.3 Fbs

E'bs lets you use Python and Qt to create desktop applications for
Windows, Mac and Linux. It can create installers for your app,
and automatlcally handles the packaging of third-party libraries
and data files. These things normally take weeks to figure out. fbs
gives them to you in minutes instead.

2.4 Git

Git is a distributed version-control system for tracking changes in
source code during software development. It is designed for coor-
dinating work among programmers, but it can be used to track
changes in any set of files. Its goals include speed, data integrity,
and support for distributed, non-linear workflows. We Used Github
for the Git Version Control System.

Chapter 3

Implementation

3.1 Unit Operations

Create a separate class for each component inheriting class Nodeltem
which takes a string which is path of svg(scable vector graphics)
file of component. Whenever new component is created an object
of Nodeltem is created,similar for removing .

3.2 Connecting Line

Line is a QGraphicsPathltem ,path of which is combination of hor-
izontal and vertical line alternatively, path is created using points
stored in line itself .Whenever a line is created it’s algorithm sets
its initial path such that it doesn’t intersects with item to which it
joins.

3.3 Line Grip

LIne Grip are child of component and used for connecting line.
Relative position of line grip is stored in component class. When a,
component is created all line grips attached to it gets created.

3.4 Size Grip

Size grip are child of component and used for resizing component.
When a component is created all size grips attached to it gets
created.

3.5 Text Label

Text label are QQGraphicsTextItem, on mouse double click it be-
comes editable else movable.User can add text lable to component
and line.

Interaction with component includes:

e Add new component

e Removing a component

e Making the connections between each component

e resizing component

e Making the connections between component and line
e Add text label to line and component

e Moving the text label

Chapter 4

Features

Following are the main features of the GUI application:

4.1 Feature of line

@9

| —

; o

LU o

e_

e A segment of line can be selected and moved to adjust line

e Arrow indicates the direction of chemical process

e Upper line has curve in case of intersecting line
e A line can be connected in mid of line

e Line gets updated when it’s start or end points component
moves

e Multiple text label can be added to line
e When selected it gets highlighted

e Text label can move on segment on which they are added

1.2 Feature of Component

component 2

component 1

e Add and remove from canvas
e Resize component in any direction
e Has grips to connect line

10

e When removed lines and labels connected to it gets removed
e Component is movable

e Add movable text label to component

4.3 Canvas

Canvas is the area where user can draw the required flowsheet. User
can con net multiple components with each other by connecting the
nodes on the different components with a line. The canvas can be
zoomed in or Out.

11

Chapter 5

To Do

5.1 Line starting from line

In current implementation a connecting line can start from line grip
item and end on line grip or another line. For a pfd it is required
to start a line from mid of another line.

5.2 Preparing class entries

Class Definition

Under src/main/python/shapes/shape.py, using the following as
an example, one can create his own class definition for the symbol.
The grip list is the percentage position of the grip item object along
with the parent’s width and height, the third value is its position
and the fourth value if specified is the width /height if the grip is a
line grip item.

HorizontalVessel (NodeItem):
__init (self):
super(HorizontalVessel, c ocess Vessels/Horizontal Vessel™)
.grips = [
[50, 16e, "top", 87.08554680344],

[e, 58, "left"],
[100, 50, "right"],
[56, @, "bottom", 87.88554680344]

]

12

Self.grip is list of grips for connecting line.List of grip having size
— 3 are circle else rectangular.

13

