
Summer Fellowship
Report

on

Chemical PFD Tool

Rishikesh Anand
Under the guidance of

Prof. Kannan Moudgalya
Department of Chemical Engineering

FOSSEE, Python
IIT Bombay

Acknowledgement

I would like to thank the FOSSEE project from IIT Bombay for giving me
an opportunity to for an internship in developing a full fledged Software,
using python. The internship opportunity provided me to put my skills to
the test all the while helping me to enhance my knowledge in the strict and
method process of developing software, exploring libraries and framework,
proper documentation, team work and general UI/UX.

I feel immense gratitude to have met so many wonderful people and
professionals who guided me through this internship period. I would like to
specially acknowledge Mr. Pravin Kumar Dalve with my deepest gratitude
who mentored and guided me during this internship and also and pro-
vided enough value in discussing and considering my thoughts on various
things, keeping me motivated. I consider this opportunity as a substantial
milestone in my career that I desire to see grow.

I shall keep exploring, and improving with the skills and experience
that I have obtained.

1

Contents

1 Introduction to PFDs 3
1.1 Why? . 3

2 Software Development using PyQt5 4
2.1 Why PyQt? . 4
2.2 The FBS dev environment 4
2.3 Licensing . 5
2.4 PySide2 . 5

3 The Tool 6
3.1 The UI . 6

3.1.1 Canvas Dimensions 6
3.1.2 Multiple Diagrams and Files 8
3.1.3 The toolbar . 9
3.1.4 The main window 14
3.1.5 Side View . 14
3.1.6 Stream Table . 15

3.2 More Quality of Life features 16
3.2.1 Zoom in/out . 16
3.2.2 Undo-Redo . 16
3.2.3 Saving and Loading project 17
3.2.4 Custom Symbol tool 19

3.3 Styling the UI . 20

4 Conclusion 21
4.1 Critical and Analytical Thinking 21
4.2 Time Management . 22
4.3 Intuitive thinking . 22
4.4 Goal management . 22
4.5 Documentation . 22

2

Chapter 1

Introduction to PFDs

A process flow diagram or PFD is a diagram commonly used in chemical
and process engineering to indicate the general flow of plant processes and
equipment. The PFD displays the relationship between major equipment
of a plant facility and does not show minor details such as piping details
and designations. Another commonly used term for a PFD is a flowsheet.

Process flow diagram - Wikipedia

1.1 Why?

While working on a chemical plant, it is extremely important to know
beforehand the detailed process of the flow of the various components
involved. A PFD is required for just that.

A PFD is a diagram representing the exact process flow, involved . It
enables engineers to plan ahead, and make it easier to understand what
needs to be done.

3

https://en.wikipedia.org/wiki/Process_flow_diagram

Chapter 2

Software Development
using PyQt5

The Qt framework was originally developed to make it easier for develop-
ers to quickly implement GUI elements and not reinvent the wheel every
time they start a new project. The original framework, was made for the
C/C++ development environment, but with python allowing C/C++ ex-
tensions, and the quick development process of python, PyQt the python
binding for the Qt framework was born

2.1 Why PyQt?

For our project, PyQt made the most sense, as most of what we needed,
from displaying PFD elements to manipulating them, connecting them,
along with additional GUI and Quality of Life features like Undo-Redo,
multiple Diagrams etc. PyQt made the most sense, due to its extensive
documentation, proper age, active development, and meaningful C/C++
to python code translation.

2.2 The FBS dev environment

Michael Herrmann developed the fman build system (fbs), to make it eas-
ier to continuously develop his file manager program called fman, without
worrying about having to configure installers and binary compilation pro-
cedures every time a new version was released. The beauty of fbs is that it

4

http://www.herrmann.io/
https://build-system.fman.io/

keeps the code structure clean, all the while allowing easy compilation pro-
cedure for each os distribution. We decided to adopt fbs early, as sooner
or later we would have seen the benefit of using it when we decided to ship
binaries. As a bonus, even python let alone the other dependencies are not
required to be pre-installed for the user to use the ”compiled” binaries!

2.3 Licensing

The software is planned to be licensed under the GNU GPL, as both PyQt5
and FBS are served under the same license, which means the software will
remain free to use and distribute and any products derived from this must
also be open sourced as well.

2.4 PySide2

With the more active development of PySide2, better documentation and
more lenient licensing (PyQt vs PySide2...), there are plans to switch
to PySide2 instead. For now, as there no conclusive differences between
PyQt5 and PySide2. It is safe to stick to PyQt5 for now.

5

https://machinekoder.com/pyqt-vs-qt-for-python-pyside2-pyside/

Chapter 3

The Tool

The main goal of our tool is to remain intuitive, easy to use yet as feature
complete as possible. We were to focus on designing the UI in very much
the same way.

I was tasked with working on the UI, and my main source reference
were the adobe suite. As an experienced After FX user, I understand the
importance of procedural components and have done my best to implement
the same design idea.

3.1 The UI

The UI consists of the multiple diagram and files the user may work on,
along with all the components needed to provide the array of features

3.1.1 Canvas Dimensions

We began with a simple QGraphicsScene used to display the PFD elements
in. It was important that the scene had a fixed width and height in
accordance to the various paper sizes available for example from A0 to
A4.

It is important to note that these paper sizes are in human scales and
not pixel dimensions. As such, it is important to convert them to accu-
rately depict the paper size. For the conversion, A value knows as Pixels
Per Inch or PPI is used to calculate the pixel dimension. Below is a
table showing the exact values for the various paper sizes

6

Size Dim(mm) 72 ppi 96 ppi 150 ppi 300 ppi
A0 841 x 1189 mm 2384 x 3370 3179 x 4494 4967 x 7022 9933 x 14043
A1 594 x 841 mm 1684 x 2384 2245 x 3179 3508 x 4967 7016 x 9933
A2 420 x 594 mm 1191 x 1684 1587 x 2245 2480 x 3508 4960 x 7016
A3 297 x 420 mm 842 x 1191 1123 x 1587 1754 x 2480 3508 x 4960
A4 210 x 297 mm 595 x 842 794 x 1123 1240 x 1754 2480 x 3508

So the first plan of action was to implement this! We built a look up
table as a dictionary in python, and saved it as a json file.

{

"A0": {

"72": [2384, 3370],

"96": [3179, 4494],

"150": [4967, 7022],

"300": [9933, 14043]

},

"A1": {

"72": [1684, 2384],

"96": [2245, 3179],

"150": [3508, 4967],

"300": [7016, 9933]

},

"A2": {

"72": [1191, 1684],

"96": [1587, 2245],

"150": [2480, 3508],

"300": [4960, 7016]

},

"A3": {

"72": [842, 1191],

"96": [1123, 1587],

"150": [1754, 2480],

"300": [3508, 4960]

},

"A4": {

"72": [595, 842],

"96": [794, 1123],

"150": [1240, 1754],

"300": [2480, 3508]

}

}

Inside the canvas class, the properties for the size and ppi was imple-
mented, and a setter method was created to set the dimensions of the scene
whenever they were changed.

Also note that the landscape feature was implemented later on, and a

7

simple hack was used.

@property

def canvasSize(self):

return self._canvasSize

@canvasSize.setter

def canvasSize(self, size):

self._canvasSize = size

if self.painter:

self.resizeView(*(sorted(paperSizes[self.canvasSize][self.ppi],

reverse = self.landscape)))

A dialog box was also added to allow the user to change between avail-
able sizes

All of this is done progressively. To add more paper sizes, update the
json file, and the program will load it upon execution.

3.1.2 Multiple Diagrams and Files

Our next feature target was enable the user to be able to edit multiple
diagrams at once. The solution was simple, create multiple instance of our
canvas object!

For this we looked into QTabWidget, where each tab consisted of a
unique self complete canvas.

8

To make creating new tabs easier, we built a chrome like new tab
button, from scratch!

It was to move to the appropriate location whenever the tab count
changed, and we implemented just that.

def movePlusButton(self):

#move the new tab button to correct location

size = sum([self.tab.tabRect(i).width() for i in range(self.tab.count())])

calculate width of all tabs

h = max(self.tab.geometry().bottom() - self.plusButton.height(), 0)

#align with bottom of tabbar

w = self.tab.width()

if size > w: #if all the tabs do not overflow the tab bar, add at the end

self.plusButton.move(w-self.plusButton.width(), h)

else:

self.plusButton.move(size+5, h)

Next was abstracting the tab widget as a file. We used QMdiSub-
Window along with a QMdiArea. An mdi sub-window is a free window
movable inside the app itself, to be exact, in the mdi area.

3.1.3 The toolbar

To build a non-obtrusive toolbar that the user could move at will, two ap-
proaches were considered, One being QToolBar and the other being QDock-
Widget, the latter made the cut, due to it requiring a child widget as such
all properties of the contents of the toolbar were easily sand boxed inside
the child widget without implementing additional behavior on the toolbar
widget itself, the float-ability and look of the dock widget as just an added
bonus.

9

Item list

The toolbar consisted of a search box and an area that contained all the
elements to be added to the scene. The scroll area is a QScrollArea that
contains a QWidget. A custom layout was implemented and assigned to
the widget, so that the items are first arranged width wise, and when no
more width is available the widget is placed in the immediate next line,
and the process repeats until no more widgets can be placed. This is one
of the example in Qt called, flow layout and was tweaked for our use case.

Search bar

For the search box, the items in the toolbar need to be filtered out as per
the search query. When the search query is empty, the dict.keys() is passed
as is, otherwise a filter object is sent. The filter object is built with an
anonymous function with regex search from the re library, and dict.keys()
iterable. This allows seamless search queries without over complicating
things.

10

def populateToolbar(self, filterFunc=None):

#called everytime the button box needs to be updated(incase of a filter)

self.clearLayout() #clears layout

for itemClass in self.toolbarButtonDict.keys():

self.diagAreaLayout.addWidget(self.toolbarLabelDict[itemClass])

for item in filter(filterFunc, self.toolbarButtonDict[itemClass].keys()):

self.diagAreaLayout.addWidget(self.toolbarButtonDict[itemClass][item])

self.resize()

def searchQuery(self):

shorten toolbaritems list with search items

self.populateToolbar() # populate with toolbar items

text = self.searchBox.text() #get text

if text == '':

self.populateToolbar() # restore everything on empty string

else:

use regex to search filter through button list and add the remainder

to toolbar

self.populateToolbar(lambda x: search(text, x, IGNORECASE))

Toolbar buttons

The toolbar items contains of two things, a category label and buttons
for each pfd symbol, to avoid using useless space, a json file is prepared,
consisting of the categories and the corresponding items.

{

"Compressors": {

"Centrifugal Compressor": {

"name": "Centrifugal Compressor",

"icon": ".\\Compressors\\Centrifugal Compressor.png",

"class": "Compressors",

"object": "CentrifugalCompressor",

"args": []

},

"Ejector Compressor": {

"name": "Ejector Compressor",

"icon": ".\\Compressors\\Ejector Compressor.png",

"class": "Compressors",

"object": "EjectorCompressor",

"args": []

},

...

},

"Furnaces and Boilers": {

"Oil Gas or Pulverized Fuel Furnace": {

11

"name": "Oil Gas or Pulverized Fuel Furnace",

"icon": ".\\Furnaces and Boilers\\Oil Gas or Pulverized Fuel Furnace.png",

"class": "Furnaces and Boilers",

"object": "OilGasOrPulverizedFuelFurnace",

"args": []

},

...

},

...

The first set of keys defines the set of categories and is used to prepare
labels, while the inner set of keys represent the items, their class info, icon
etc. and is used to prepare a list of QToolButtons that have their logo set
to the icon value from the dictionary.

Button click and Drag & Drop

The final thing was to implement the button click event as well as drag
and drop.

The button click event was simple, as qt provides button click events
itself.

However, to implement drag and drop, there were two objectives,

1. Differentiate between button click and drag-drop intents

This is done by checking if the mouse has moved the equivalent of
something known inside qt as the Manhattan length from the button
with the mouse pressed, if it has the drag and drop intent is registered
otherwise button press intent is registered.

def mousePressEvent(self, event):

#check if button was pressed or there was a drag intent

super(toolbarButton, self).mousePressEvent(event)

if event.button() == Qt.LeftButton:

self.dragStartPosition = event.pos() #set dragstart position

def mouseMoveEvent(self, event):

#handles drag

if not (event.buttons() and Qt.LeftButton):

return #ignore if left click is not held

if (event.pos() - self.dragStartPosition).manhattanLength() <

app.app.startDragDistance():

return

12

#check if mouse was dragged enough, manhattan length is a rough

#and quick method in qt

-- drag and drop code --

2. Implement Drag and Drop itself

To do this, we must first understand about mime data,

Now known as media type, mime data is a two part identifier used
to identify the data type.

While dragging and dropping, the object name is attached as text
to QMimeData which is then attached to the mouse by using QDrag .
The canvas accepts mime drops, and if a valid class is dropped to
the scene it creates an object with the class name and then sets is
position at the drop position.

Create drop

drag = QDrag(self) #create drag object

mimeData = QMimeData() #create drag mime

mimeData.setText(self.itemObject) # set mime value for view to accept

drag.setMimeData(mimeData) # attach mime to drag

drag.exec(Qt.CopyAction) #execute drag

Accept drop

def dropEvent(self, QDropEvent):

#defines item drop, fetches text, creates corresponding QGraphicItem and adds it to

#scene

if QDropEvent.mimeData().hasText():

#QDropEvent.mimeData().text() defines intended drop item, the pos values define

#position

obj = QDropEvent.mimeData().text().split('/')

graphic = getattr(shapes, obj[0])(*map(lambda x: int(x) if x.isdigit() else x,

obj[1:]))

self.scene().addItemPlus(graphic)

graphic.setPos(QDropEvent.pos().x(), QDropEvent.pos().y())

QDropEvent.acceptProposedAction()

13

3.1.4 The main window

The main window is built using QMainWindow, along with a central mdi
area. A menu bar is built with actions for creating a new project, saving
the project and opening a new one.

The save and open file windows are made using QFileDialog ’s methods,
getSaveFileName and getOpenFileNames respectively.

Multiple files can be opened at once. But a separate save file dialog
will be opened for each file open currently.

3.1.5 Side View

More of a quality of life feature, A side view was implemented to have a
persistent diagram on screen, for a file. It is added to the QMdiSubWindow,
at the request of the user, and can be removed as required, and even allows
free switching either by right clicking any canvas and selecting view side-
by-side, or right clicking the side view itself to open a separate dialog box
to switch views.

14

3.1.6 Stream Table

A late addition, a stream table defining the various details about a dia-
gram was added by adding a customized QTableView to the QGraphicsS-
cene using a QGraphicsProxyWidget with a moveable parent rect Item to
allow moving the diagram freely inside the scene. The stream table can
be added to a scene by simply right clicking the scene

15

3.2 More Quality of Life features

3.2.1 Zoom in/out

A very important feature while working with diagrams. It is implemented
by using the setScale method on the QGraphicsView , with the scale
amount equivalent to the degrees scrolled in from the scroll wheel. More-
over, It works with track pad zoom-in gestures that come on laptops and
supports high-precision mice thanks to qt.

def wheelEvent(self, QWheelEvent):

#overload wheelevent, to zoom if control is pressed, else scroll normally

if QWheelEvent.modifiers() & Qt.ControlModifier: #check if control is pressed

if QWheelEvent.source() == Qt.MouseEventNotSynthesized: #check if precision

#mouse(mac)

angle delta is 1/8th of a degree per scroll unit

if self.zoom + QWheelEvent.angleDelta().y()/2880 > 0.1:

hit and trial value (2880)

self.zoom += QWheelEvent.angleDelta().y()/2880

else:

precision delta is exactly equal to amount to scroll

if self.zoom + QWheelEvent.pixelDelta().y() > 0.1:

self.zoom += QWheelEvent.angleDelta().y()

QWheelEvent.accept() # accept event so that scrolling doesnt happen

#simultaneously

else:

return super(customView, self).wheelEvent(QWheelEvent) # scroll if ctrl not

#pressed

3.2.2 Undo-Redo

Using a QUndoStack, a user can simply use Ctrl+Z, Ctrl+Y to undo or
redo the last action.

Also added is a stack view, that allows the user to shift through multiple
actions at once, while maintaining the consistency of the items.

The main thing here is that all possible undo-redo actions need to be
implement as a subclass of QUndoCommand as part of the entire QUnd-
oFramework. Whenever a new undo-able is performed it is to be executed
by pushing to the undo stack instead.

16

Current, there are sub-classes for resizing, moving, adding and deleting
items along with adjusting the canvas dimensions.

3.2.3 Saving and Loading project

The most critical and hardest feature to implement, this took quite the
development time to implement.

The original idea was to use pickle to save the projects in a file with
.pfd format, but the decision was made to switch to json so that converting
to future versions is much easier, since a json file can easily be viewed in
a simple text editor.

Its important to note, that what we have implemented is not true
saving or loading, as rather than saving the state of the items we write
information about how to recreate the items from scratch.

Furthermore, it is important that before saving and after loading, the
object references remain consitent, as it is impossible to recreate infor-
mation at the same memory location, writing pointers to json would be
pointless. Instead, what we do is store references in the forms of id’s and
instead of generating a new id for every object we use the hex value of its
memory location.

17

This allows us to store references and when loading recreate the re-
frences by preparing a lookup dictionary with the id as the key and refer-
ence pointer as the value.

Here is how objects are loaded, inside the canvas.

def __setstate__(self, dict):

self._ppi = dict['ppi']

self._canvasSize = dict['canvasSize']

self.landscape = dict['landscape']

self.setObjectName(dict['ObjectName'])

for item in dict['symbols']:

graphic = getattr(shapes, item['_classname_'])()

graphic.__setstate__(dict = item)

self.painter.addItem(graphic)

graphic.setPos(*item['pos'])

graphic.updateLineGripItem()

graphic.updateSizeGripItem()

for gripitem in item['lineGripItems']:

shapeGrips[gripitem[0]] = (graphic, gripitem[1])

if item['label']:

graphicLabel = shapes.ItemLabel(pos = QPointF(*item['label']['pos']),

parent = graphic)

graphicLabel.__setstate__(item['label'])

self.painter.addItem(graphicLabel)

for item in dict['lines']:

line = shapes.Line(QPointF(*item['startPoint']), QPointF(*item['endPoint']))

lines[item['id']] = line

line.__setstate__(dict = item)

self.painter.addItem(line)

graphic, index = shapeGrips[item['startGripItem']]

line.startGripItem = graphic.lineGripItems[index]

graphic.lineGripItems[index].line = line

if item['endGripItem']:

graphic, index = shapeGrips[item['endGripItem']]

line.endGripItem = graphic.lineGripItems[index]

graphic.lineGripItems[index].line = line

else:

line.refLine = lines[item['refLine']]

lines[item['refLine']].midLines.append(line)

line.refIndex = item['refIndex']

for label in item['label']:

labelItem = shapes.LineLabel(QPointF(*label['pos']), line)

line.label.append(labelItem)

labelItem.__setstate__(label)

self.painter.addItem(labelItem)

line.updateLine()

line.addGrabber()

shapeGrips.clear()

lines.clear()

18

and Here is how objects are serialized to be saved as a dict. The
following example is of a pfd symbol on the scene.

def __getstate__(self):

return {

"_classname_": self.__class__.__name__,

"width": self.width,

"height": self.height,

"pos": (self.pos().x(), self.pos().y()),

"lineGripItems": [(hex(id(i)), i.m_index) for i in self.lineGripItems],

"label": self.label

}

3.2.4 Custom Symbol tool

Built right into the tool, and available separately, is a simple dialog box
to visually place grip items over an svg file, create the necessary class
definition, items.json entry and the toolbar icon.

The following template is used, and rendered out as html on a QTextE-
dit window.

output = OutputBox(temp, f"""

 Class Definition:

<pre>

class {className}(NodeItem):

def __init__(self):

super({className}, self).__init__("

svg/{category}/{str.split(name[0], "/")[-1][:-4]}")

{grips}

</pre>

 Items.json entry:

<pre>

"{category}": {{

"{itemName}": {{

"name": "{itemName}",

"icon": ".\\{category}\\{str.split(name[0], "/")[-1]}",

"class": "{category}",

"object": "{className}",

"args": []

}}

}}</pre>""")

19

3.3 Styling the UI

It is so very important that the UI looks appealing, and is not obnoxious
for a user to use. Therefore, a Qt Style Sheet, or QSS was written from
scratch. Specific properties like the color palette, component sizes and
behavior on interaction, along with the minor details such as the round
edges of corner edges was implemented. QSS syntax is very similar to web
CSS , and experience in web-dev was very useful.

20

Chapter 4

Conclusion

On the whole, this internship was a very fruitful experience. I have gained
new knowledge, skills and have also met a few new people. I realized the
importance of discussion and feedback, analytic thinking and team work.
I have achieved several learning goals, and have moved a step further in
achieving a few other. I got insight into professional practice, and it has
allowed as an opportunity to get an exposure of the practical implemen-
tation of theoretical fundamentals of software engineering. During this
internship I gained a solid grasp on the following tools/software/services,

1. Version Control using GIT

2. UI development using QT framework

3. The nuances of python, one-liners and proper class properties

4. Implementing feature branches using Github, along with PRs and
Issue tracker

5. Slack, Hangouts and Google Meet for communication

Furthermore, I found that several things are important during the de-
velopment of software in a professional environment,

4.1 Critical and Analytical Thinking

Whenever a new feature is to be implemented, it is critical to think about
the various approaches one could take, what each approach might affect
to whatever is already implemented, how new feature friendly will it be

21

in the future, what are the pros and cons of each approach, what is the
resource cost both in development time and computation time and if there
is scope for optimization. Everyone likes to have a feature complete tool,
but not at the expense of minor annoyances, like long wait times, sluggish
behavior or straight up broken components.

4.2 Time Management

Managing time is another important aspect as unlike a casual environment,
there is always a deadline to meet which means that one cannot take huge
amounts of time just exploring and a compromise must most of the times
be made. It is useful to not stick to a single approach if it leads to bugs
that require additional time to squash.

4.3 Intuitive thinking

Components of the program should be procedural, and not case based.
UI components should have a central information pool, and should scale
automatically with additional data added to the pool, without manual
input. This can be seen from my implementation of the toolbar, where the
list of buttons is pulled from a json file which then populates the toolbar,
without manual intervention. As for algorithms, they should have human
like thinking logic instead of a case based implementation leading to a
spaghetti of if else statements, this prevents having to implement every
possible case which in some situations might not even be possible.

4.4 Goal management

It is important to divide a goal to sub tasks the need to be completed first
in order to achieve that goal, it allows one to keep track and even stay
motivated while working on something.

4.5 Documentation

While not of use for the user, as part of open source, it is a developer’s duty
to properly document and comment their code, so that if someone were
to improve on the project, they don’t have to waste precious development

22

time in understanding the code base. Documentation is critical even for
tools and not just frameworks, as it specifies what each component does
and maybe even how.

23

	Introduction to PFDs
	Why?

	Software Development using PyQt5
	Why PyQt?
	The FBS dev environment
	Licensing
	PySide2

	The Tool
	The UI
	Canvas Dimensions
	Multiple Diagrams and Files
	The toolbar
	The main window
	Side View
	Stream Table

	More Quality of Life features
	Zoom in/out
	Undo-Redo
	Saving and Loading project
	Custom Symbol tool

	Styling the UI

	Conclusion
	Critical and Analytical Thinking
	Time Management
	Intuitive thinking
	Goal management
	Documentation

