
Summer Fellowship Report

On

Yaksh: Addition Of A New Code Evaluator

Submitted by

Arpit Kaushik

Under the guidance of

Prof. Prabhu Ramachandran

Deparatment of Aerospace Engineering

IIT Bombay

July 4, 2018

Acknowledgment

I wish to express our profound gratitude to our internship guide prof. Prabhu
Ramchandran, Deparatment of Aerospace Engineering, IIT Bombay for his
constant support and supervision thorughout the internship.

I am highly indebted to my project mentor Mr. Ankit R. Javalkar and my project
head Mr. Mahesh Gudi for their continous support, supervision motivation and
guidance throughout the tenure of my project in spite of their hectic schedule who
truly remained driving spirit in my project and their experience gave me the light
in handling this project and helped me in clarifying the abstract concepts,
requiring knowledge and perception, handling critical situations and in
understanding the objective of my work.

1

Contents

1 Introduction 3

2 Moderator and User mode on Yaksh 4
2.1 Moderator Mode . 4
2.2 Adding a new question . 4
2.3 User Mode . 6

3 Code Evaluator 8
3.1 What is Code Evaluator? . 8
3.2 STDIO Evaluator :- For Standard Input/Output 8
3.3 Assertion Evaluator :- For Assertion test cases 10

4 Ruby Code Evaluator 11
4.1 Ruby . 11
4.2 Ruby STDIO Code Evaluator . 11
4.3 Ruby Assertion Evaluator . 13

5 Test Cases for Ruby Code Evaluators 16
5.1 Tests for STDIO Evaluator . 16
5.2 Tests for Assertion Evaluator . 20
5.3 Add Ruby in Backend . 22

2

Chapter 1

Introduction

Yaksh is an Online Test Interface for Conducting online programming quiz. It
supports various programming languages like :- C, C++, Python and simple Bash.
User can solve any questions by using these languages. Yaksh uses ”test cases” to
test the the implementations of the students. It also supports simple multiple
choice questions and file uploads so that user can easily submit his code. Not only
you can practice the questions even you can also conduct a programming quiz that
supports various languages. Yaksh also provides various programming courses
like:- C++, C and Python. So, we can Yaksh is a best platform to improve our
programming skills.

3

Chapter 2

Moderator and User mode on
Yaksh

2.1 Moderator Mode

As we know that yaksh is made for conducting quiz. So, In Yaksh, Moderator can
easily make questions on various languages like:- Python, C, C++ and Bash. So,
for making new questions we have to follow these steps:-

• first login as moderator and go to Questions page.

• Here you can add new questions by click on add question button.

• In add question Page you have to submit all informations like:-Summary, Lan-
guage, Type of Question, Points, Description, Solution and Many other details
related to that question.

• after filling these information you can save this by click on save option.

2.2 Adding a new question

• login as a Moderator

4

• Click On Questions

• Click on Add Question +

• Fill All these details

5

• Now save the question

2.3 User Mode

In User mode user can submit their code on editor on exam portal and check their
whether it is correct or not.

• Submit the question

– When you submitted correct answer

6

– When you submitted Incorrect answer

7

Chapter 3

Code Evaluator

3.1 What is Code Evaluator?

• Basically Yaksh is made for conducting online programming quiz.

• It supports various programming questions Based on Python, C, C++ and
Bash and uses test cases to test the implementations of students.

• these code evaluators Evaluate user answer and show the result as successful
submission.

• It also shows Errors that user did in his answer when Output is wrong.

• For different languages we have to use different evaluator.

• So, there are two types of evaulators in every language to evaluate the code
that submitted by students :-

– STDIO Evaluator :- For Standard Input/Output.

– Assertion Evaluator :- For Assertion test cases.

3.2 STDIO Evaluator :- For Standard Input/Output

STDIO :- In computer programming, standard streams are preconnected input
and output communication channels between a computer program and its
environment when it begins execution. The three input/output (I/O) connections
are called standard input (stdin), standard output (stdout) and standard error
(stderr). Originally I/O happened via a physically connected system console
(input via keyboard, output via monitor), but standard streams abstract this.
When a command is executed via an interactive shell, the streams are typically
connected to the text terminal on which the shell is running, but can be changed
with redirection or a pipeline. More generally, a child process will inherit the
standard streams of its parent process.

8

The three input/output (I/O) connections are :-

• Standard Input (stdin)

Standard input is stream data (often text) going into a program. The
program requests data transfers by use of the read operation. Not all
programs require stream input. For example, the dir and ls programs
(which display file names contained in a directory) may take
command-line arguments, but perform their operations without any
stream data input.

• Standard Output (stdout)

Standard output is the stream where a program writes its output data.
The program requests data transfer with the write operation. Not all
programs generate output. For example, the file rename command
(variously called mv, move, or ren) is silent on success.

• Standard error (stderr)

Standard error is another output stream typically used by programs to
output error messages or diagnostics. It is a stream independent of
standard output and can be redirected separately. This solves the
semipredicate problem, allowing output and errors to be distinguished,
and is analogous to a function returning a pair of values see
Semipredicate problem: Multivalued return. The usual destination is
the text terminal which started the program to provide the best chance
of being seen even if standard output is redirected (so not readily
observed). For example, output of a program in a pipeline is redirected
to input of the next program, but errors from each program still go
directly to the text terminal.

9

3.3 Assertion Evaluator :- For Assertion test cases

Assertion :- In computer programming, an assertion is a statement that a
predicate (Boolean-valued function, i.e. a truefalse expression) is always true at
that point in code execution. It can help a programmer read the code, help a
compiler compile it, or help the program detect its own defects. For the latter,
some programs check assertions by actually evaluating the predicate as they run
and if it is not in fact true, an assertion failure, the program considers itself to be
broken and typically deliberately crashes or throws an assertion failure exception.
An assertion is a sanity-check that you can turn on or turn off when you are done
with your testing of the program. It raised error when assertion failed due to any
error. Like if If expression evaluates to TRUE, assert() does nothing. If expression
evaluates to FALSE, assert() displays an error message on stderr and aborts
program execution.

10

Chapter 4

Ruby Code Evaluator

4.1 Ruby

Ruby is a dynamic, interpreted, reflective, object-oriented, general-purpose
programming language. It was designed and developed in the mid-1990s by
Yukihiro ”Matz” Matsumoto in Japan. According to the creator, Ruby was
influenced by Perl, Smalltalk, Eiffel, Ada, and Lisp.It supports multiple
programming paradigms, including functional, object-oriented, and imperative. It
also has a dynamic type system and automatic memory management.

4.2 Ruby STDIO Code Evaluator

For Ruby Stdio Evaluator We have to make A Class called RubyStdIOEvaluator
that inherit Another class called StdIOEvaluator. It contains four functions :-

• Contructor

So, this function sets the values for user answer, file path and partial
grading by using metadata object that return the values after calling
get function from code server. Also, it does same to set the values for
expected input, expected output and weight by using testcasedata object.
let’s see the function:-

def __init__(self, metadata, test_case_data):

self.files = []

Set metadata values

self.user_answer = metadata.get(’user_answer’)

self.file_paths = metadata.get(’file_paths’)

self.partial_grading = metadata.get(’partial_grading’)

Set test case data values

self.expected_input = test_case_data.get(’expected_input’)

self.expected_output = test_case_data.get(’expected_output’)

self.weight = test_case_data.get(’weight’)

11

• Teardown

This function removes the existing files from our system. everytime when
user submits his solution this function removes previous save files from
our system.

def teardown(self):

os.remove(self.submit_code_path)

if self.files:

delete_files(self.files)

• Compile Code

This is the Key function for Ruby stdio evaluator. In this function we
make a empty ruby file and save it to a submit code path by using
create submit code path function. After that we copy the user answer
into submit code path. for taking input we use StringIO function. At
last we run popen function using subprocess object that allows you to
spawn new processes, connect to their input/output/error pipes, and ob-
tain their return codes.

def compile_code(self):

self.submit_code_path = self.create_submit_code_file(’submit.rb’)

self.write_to_submit_code_file(self.submit_code_path, self.user_answer)

if self.expected_input:

self.expected_input = self.expected_input.replace(’\r’, ’’)

input_buffer = StringIO()

input_buffer.write(self.expected_input)

input_buffer.seek(0)

sys.stdin = input_buffer

self.proc = subprocess.Popen(’ruby {0}’.format(self.submit_code_path),

shell=True,

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

stderr=subprocess.PIPE,

preexec_fn=os.setpgrp

)

12

• Check Code

this function evaluate the user answer using evaluate stdio function
that return the value of success and error to code server. it also set the
value for mark fraction if there any partial grading in question.

def check_code(self):

success = False

err = ’’

mark_fraction = 0.0

success, err = self.evaluate_stdio(self.user_answer,

self.proc, self.expected_input,

self.expected_output)

mark_fraction = 1.0 if self.partial_grading and success else 0.0

return success, err, mark_fraction

4.3 Ruby Assertion Evaluator

For Ruby Assertion Evaluator We have to make A Class called rubyCodeEvaluator
that inherit Another class called BaseEvauator. It also contains same functions as
stdio :-

• Constructor

So, this function sets the values for user answer, file path and partial
grading by using metadata object that return the values after calling
get function from code server. Also, it does same to set the values for
expected input, expected output and weight by using testcasedata object.

def __init__(self, metadata, test_case_data):

self.files = []

self.process = None

self.submit_code_path = ""

Set metadata values

self.user_answer = metadata.get(’user_answer’)

self.file_paths = metadata.get(’file_paths’)

self.partial_grading = metadata.get(’partial_grading’)

Set test case data values

self.test_case = test_case_data.get(’test_case’)

self.weight = test_case_data.get(’weight’)

13

• Teardown

This function removes the existing files from our system. everytime when
user submits his solution this function removes previous save files from
our system.

def teardown(self):

Delete the created file.

if os.path.exists(self.submit_code_path):

os.remove(self.submit_code_path)

if self.files:

delete_files(self.files)

• Compile Code

This is the Key function for Ruby Assertion evaluator. In this function
we make a empty ruby file and save it to a submit code path by us-
ing create submit code path function and then copy test case data

at same place . after that we use run command function using subpro-
cess object that allows you to spawn new processes, connect to their
input/output/error pipes, and obtain their return codes.

def compile_code(self):

self.submit_code_path = self.create_submit_code_file(’submit.rb’)

submit_f = open(self.submit_code_path, ’w’)

submit_f.write(self.user_answer.lstrip())

submit_f.write(’\n’)

submit_f.write(self.test_case.lstrip())

submit_f.close()

self.process = self._run_command(

’ruby {0}’.format(self.submit_code_path),

shell=True,

stdout=subprocess.PIPE,

stderr=subprocess.PIPE

)

14

• Check Code

Function validates student code using instructor code as reference.The
first argument ref code path, is the path to instructor code, it is as-
sumed to have executable permission. The second argument submit code path,
is the path to the student code, it is assumed to have executable permis-
sion.

def check_code(self):

success = False

mark_fraction = 0.0

proc, stdnt_out, stdnt_stderr = self.process

stdnt_stderr = self._remove_null_substitute_char(stdnt_stderr)

if stdnt_stderr == ’’:

if proc.returncode == 0:

success, err = True, None

mark_fraction = 1.0 if self.partial_grading else 0.0

else:

err = "{0} \n {1}".format(stdout, stderr)

else:

err = "Error:"

try:

error_lines = stdnt_stderr.splitlines()

for e in error_lines:

if ’:’ in e:

err = "{0} \n {1}".format(err, e.split(":", 1)[1])

else:

err = "{0} \n {1}".format(err, e)

except:

err = "{0} \n {1}".format(err, stdnt_stderr)

return success, err, mark_fraction

15

Chapter 5

Test Cases for Ruby Code
Evaluators

For Checking the correct functionality of code evaluators we have to write some
functions to test the user answer whether it is correct or incorrect. It also checks
for infinite loop, syntax error, array input etc. So, We made two different classes
for STDIO and Assertion Evaluator.

5.1 Tests for STDIO Evaluator

for stdio evaluator we make a class called RubyStdIOEvaluationTestCases that
test user answer for different conditions like:- correct answer, incorrect answer,
infinite loop and many more. let’s see some basic functions :

• Setup

In this function we set the values for expected output, expected input
and weight etc and save timeout message for infinite loop condition.

def setUp(self):

self.test_case_data = [{’expected_output’: ’11’,

’expected_input’: ’5\n6’,

’weight’: 0.0,

’test_case_type’: ’stdiobasedtestcase’

}]

self.in_dir = tempfile.mkdtemp()

self.timeout_msg = ("Code took more than {0} seconds to run. "

"You probably have an infinite loop in"

" your code.").format(SERVER_TIMEOUT)

self.file_paths = None

16

• Test correct answer

In this function we write correct solution and make python dictionary
called kwargs that contains value of user answer, file paths,test case
data etc. that kwargs passed as a arugument in evaluate function that
evalute that answer and return result.

def test_correct_answer(self):

Given

user_answer = dedent("""

val1 = gets

val2 = gets

print (val1.to_i + val2.to_i)

""")

kwargs = {

’metadata’: {

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

’language’: ’ruby’

},

’test_case_data’: self.test_case_data

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

Then

self.assertTrue(result.get(’success’))

• Test incorrect answer

In this function we write incorrect solution and make python dictionary
called kwargs that contains value of user answer, file paths,test case
data etc. that kwargs passed as a arugument in evaluate function that
evalute that answer return result and error.

def test_incorrect_answer(self):

Given

user_answer = dedent("""

val1 = gets

val2 = gets

print (val1.to_i * val2.to_i)

""")

kwargs = {

’metadata’: {

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

17

’language’: ’ruby’

},

’test_case_data’: self.test_case_data

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

Then

lines_of_error = len(result.get(’error’)[0].get(’error_line_numbers’))

result_error = result.get(’error’)[0].get(’error_msg’)

self.assertFalse(result.get(’success’))

self.assert_correct_output("Incorrect", result_error)

self.assertTrue(lines_of_error > 0)

• Test infinite loop

In this function we write infinite loop condition and make python
dictionary called kwargs that contains value of user answer, file
paths,test case data etc. that kwargs passed as a arugument in evaluate
function that evalute that answer return result and error.

def test_infinite_loop(self):

Given

user_answer = dedent("""

m=1

loop do

puts "232"

m+=1

break if m==0

end

""")

timeout_msg = ("Code took more than {0} seconds to run. "

"You probably have an infinite loop in"

" your code.").format(SERVER_TIMEOUT)

kwargs = {’metadata’: {

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

’language’: ’ruby’},

’test_case_data’: self.test_case_data

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

18

Then

self.assert_correct_output(timeout_msg,

result.get("error")[0][’message’]

)

self.assertFalse(result.get(’success’))

parent_proc = Process(os.getpid()).children()

if parent_proc:

children_procs = Process(parent_proc[0].pid)

self.assertFalse(any(children_procs.children(recursive=True)))

19

5.2 Tests for Assertion Evaluator

for assertion evaluator we make a class called RubyAssertionEvalutionTestCases
that test user answer for different conditions like:- correct answer, incorrect answer,
infinite loop and many more. let’s see some basic functions :

• Setup

In this function we set the values for test case data that assert with user
answer and save timeout message for infinite loop condition.

def setUp(self):

self.f_path = os.path.join(tempfile.gettempdir(), "test.txt")

with open(self.f_path, ’wb’) as f:

f.write(’2’.encode(’ascii’))

tmp_in_dir_path = tempfile.mkdtemp()

self.tc_data = dedent("""

class AssertionError < StandardError

end

def assert(message=nil, &block)

unless(block.call)

raise AssertionError, (message || "Assertion failed")

end

end

""")

self.test_case_data = [{"test_case": ’{0}\n{1}’.format(self.tc_data, ’assert{add(1,2)==3}’),

"test_case_type": "standardtestcase",

"weight": 0.0

},

{"test_case": ’{0}\n{1}’.format(self.tc_data, ’assert{add(-1,2)==1}’),

"test_case_type": "standardtestcase",

"weight": 0.0

},

{"test_case": ’{0}\n{1}’.format(self.tc_data, ’assert{add(-2,1)==-1}’),

"test_case_type": "standardtestcase",

"weight": 0.0

},]

self.in_dir = tmp_in_dir_path

self.timeout_msg = ("Code took more than {0} seconds to run. "

"You probably have an infinite loop in your"

" code.").format(SERVER_TIMEOUT)

self.file_paths = None

• Test correct answer

In this function we write correct solution and make python dictionary
called kwargs that contains value of user answer, file paths,test case data
etc. that kwargs passed as a arugument in evaluate function that evalute
that answer and return result.

20

def test_correct_answer(self):

Given

user_answer = "\ndef add(a,b)\n\treturn a+b\nend\n"

kwargs = {

’metadata’:

{

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

’language’: ’ruby’

},

’test_case_data’: self.test_case_data,

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

Then

self.assertTrue(result.get(’success’))

• Test incorrect answer

In this function we write incorrect solution and make python dictionary
called kwargs that contains value of user answer, file paths,test case data
etc. that kwargs passed as a arugument in evaluate function that evalute
that answer return result and error.

def test_incorrect_answer(self):

Given

user_answer = "\ndef add(a,b)\n\treturn a-b\nend\n"

kwargs = {

’metadata’: {

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

’language’: ’ruby’

},

’test_case_data’: self.test_case_data,

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

lines_of_error = len(result.get(’error’)[0].splitlines())

self.assertFalse(result.get(’success’))

self.assert_correct_output("Error", result.get(’error’))

self.assertTrue(lines_of_error > 1)

21

• Test infinite loop

In this function we write infinite loop condition and make python dictio-
nary called kwargs that contains value of user answer, file paths,test case
data etc. that kwargs passed as a arugument in evaluate function that
evalute that answer return result and error. let’s see the function:-

def test_infinite_loop(self):

Given

user_answer = "\ndef add(a, b)\n\twhile true\n\tend\nend\n"

kwargs = {’metadata’: {

’user_answer’: user_answer,

’file_paths’: self.file_paths,

’partial_grading’: False,

’language’: ’ruby’},

’test_case_data’: self.test_case_data,

}

When

grader = Grader(self.in_dir)

result = grader.evaluate(kwargs)

Then

self.assertFalse(result.get("success"))

self.assert_correct_output(self.timeout_msg,

result.get("error")[0]["message"]

)

parent_proc = Process(os.getpid()).children()

if parent_proc:

children_procs = Process(parent_proc[0].pid)

self.assertFalse(any(children_procs.children(recursive=True)))

5.3 Add Ruby in Backend

After making Code Evaluators we have to add ruby to our backend that can be
understand by these step:-

• Add Ruby into code evaluators dictionary.

• Add ruby into forms.py for adding into drop drag menu. enditemize

22

Reference

– for python built-in function https://docs.python.org/2/library/subprocess.html

– for Ruby go to https://www.ruby-lang.org/en/

– https://www.ruby-forum.com/topic/120280

23

