
Summer Fellowship Report

On

FOSSEE Forums Web Development

Submitted by

Chaitanya Baranwal

Under the guidance of

Prof. Kannan M. Moudgalya

Chemical Engineering Department

Indian Institute of Technology, Bombay

July 4, 2018

Acknowledgment

First and foremost, I would like to thank Prof. Kannan Moudgalya for establishing
this fellowship, which I believe was an excellent introduction to me on open-source
software and technologies. His suggestions greatly improved the quality of the
project.

I would also like to thank my mentors Mr. Prashant Sinalkar and Ms. Sashi Rekha
for providing valuable insight and expertise, as well as assisting me in overcoming
the several difficulties I faced during the course of this project. Their advice on the
spam-detector significantly improved the filtering process, and the various
problems they noticed in the website considerably helped me in the bug-fixing
phase. I would never be able to finish the project without their support.

I would also like to show my gratitude to my fellow interns and peers, who were
constantly there to clarify my doubts and recommend improvements to the
project. Their help and support was of immense value to me.

1

Contents

1 Introduction 3

2 User Section 4
2.1 Home View . 4
2.2 Filtering questions by category . 4
2.3 Search bar . 4
2.4 Asking a new question . 5
2.5 Notifications . 5
2.6 Viewing profile and changing password 5
2.7 Viewing a particular question . 6
2.8 Logging in and editing profile . 6

3 Moderator Interface 7
3.1 Home View . 7
3.2 Viewing a particular question . 8
3.3 Editing a question . 8
3.4 Spam, non-spam and unanswered questions 8

4 Spam Filter 9
4.1 Reading the available data . 9
4.2 Data pre-processing . 10
4.3 Machine-learning algorithms used to train on data 11
4.4 Predicting posts as spam/non-spam 11

5 Other modifications and fixes 12

References 13

2

Chapter 1

Introduction

The FOSSEE Forums is a website which provides a platform for professionals
and beginners alike to discuss a variety of technology-related areas by posting
questions and answers. FOSSEE stands for ’Free and Open Source Science and
Engineering Education’. The forum focuses on open-source technologies accessible
to the general public. Users can choose to create an account to post anything on
the forum, but doing so is not necessary, and they still have access to the entire
forum content without logging in.

The strongest facet of the forum is its focus on niche areas and software. Experts
in these areas are small in number, since many of these areas require
multidisciplinary knowledge extending beyond only technology. For instance,
DWSIM is a chemical process simulator which would require knowledge of
chemistry, and OpenFOAM is a toolbox for mechanics and Computational Fluid
Dynamics (CFD). It’s relatively difficult to find people on the internet who can
provide quality solutions to such problems, and that is where FOSSEE experts
come in. They have knowledge in such niche areas, and can access the forum to
answer questions posted on the website.

This summer fellowship project focused on primarily three areas: bug fixes, a
moderator interface and a spam filter. The spam filter predicts if a posted
question or answer is a spam post, and only the posts marked non-spam are visible
to regular users. The moderator interface is a specialised section of the website
accessible only by FOSSEE moderators, who are offered an array of features,
giving them complete control over the forum posts. Since moderators cannot have
knowledge in every area, they’re usually assigned specific FOSS (Free and Open
Source Software) categories, and posts outside these categories remain inaccessible
to these moderators. This report will include three distinct sections on the project
— the User Section, the Moderator Interface and the Spam Filter —
outlining the working of and my contributions to each section.

The project required working on Python and Django (a Python-based web
framework) for back-end management, HTML, CSS, Javascript and JQuery
for front-end management, and SQL for database handling of the website.

3

Chapter 2

User Section

The User Section is accessible to anyone who visits the forum, regardless of
whether he/she is a moderator or not. Only the non-spam posts are
displayed. Without logging in, one can view all the questions, answers and
comments, but cannot post anything on the forum.

2.1 Home View

The home view is the first web-page a user comes across on entering the forum
website. It is relatively simple, with a carousel to show the various categories and
an option to view all the questions in the forum. It also has a list of the most
recent questions to make navigation a little easier.

My contribution here was to change the displayed questions so only the questions
marked non-spam as visible to a regular user visiting the forum. As we will see,
this changes when a moderator is logged in, who is able to view all the questions.

2.2 Filtering questions by category

The website has an option to filter all the questions by their respective categories.
This can be done from the carousel in the homepage or by clicking the category of
a particular question.

A previous bug was fixed in the all questions web-page where questions from the
’Sandhi’ category were not displayed. Another bug was fixed which did not show
the category name in the page title. Only non-spam questions are displayed.

2.3 Search bar

The web-page earlier consisted of a Google search bar, which did not align with
how a forum search option should work. Moreover, the search option was present
only in the home page, which made accessing it a little more tedious.

4

Removing the Google search bar, I implemented a search option in the main
navigation bar, allowing users to search questions whenever needed. Questions are
filtered according to their respective titles.

2.4 Asking a new question

Earlier versions of the project included an ’Ask A Question’ option, but this was
riddled with several bugs. These included allowing empty titles, problems in
category selection, allowing descriptions with only HTML tags, and no option to
upload an image.

Most of the errors existed in NewQuestionForm class in forms.py. Using the
BeautifulSoup library, I added form validation checks, such that titles and
descriptions which are empty or contain only HTML tags are not allowed. The
NicEdit plugin was replaced by CKEditor for better formatting, and also because
the former was blocking the submission of POST requests. Finally, an ImageField

was added in Question model and NewQuestionForm for uploading an image to
support the question. Image dimensions are restricted using the django resized

library and file size is also restricted to a custom value in settings.py.

2.5 Notifications

Whenever an answer is posted, the respective question creator is notified. Same
happens when comments are posted to a particular answer. The users are notified
using the Notification model, which consists of a user ID, question ID, answer
ID and a comment ID to correspond to any particular user and post. Whenever
the user logs into the forum, notifications with his/her user ID are available.

My contribution here consisted of fixing a major security concern, through which a
user could manually enter a URL to access another user’s notifications.

2.6 Viewing profile and changing password

Extending on the Django User model, the website uses a Profile model, adding
additional attributes like phone number, confirmation code (for logging in the first
time) and address. During local testing, any superuser created through the
terminal does not have a profile, and ’View Profile’ section gave errors in such
cases. Fixing it involved creating an empty profile for a superuser, which needed to
be provided to access certain features of the forum.

A significant option the forum initially lacked was the feature of changing
passwords. If an unauthorized person acquires the user’s password in such a case,
he/she can access the account for extended periods of time. Adding a ’Change
Password’ option using Django’s built-in views gives users the freedom to change
their passwords whenever required.

5

2.7 Viewing a particular question

Perhaps the most obvious section of any forum, this section shows details of a
particular question, along with the corresponding answers and comments. After all
the answers is a form to upload your own answer, available only when a user is
logged in. Details like the post creator, the date of creation and the question
category are all mentioned.

The first bug-fix involved the upvote and downvote buttons, in which a user who’s
upvoted the post cannot downvote it, and vice versa. Moreover, in some cases, a
user could simultaneously upvote and downvote a post. Fixing this involved
modifying the vote post and ans vote post views, as well as the JavaScript
sections of get-question.html. Other improvements included giving an
edit/delete question option to its creator, but only when no answers have been
posted.

Clicking on the ’Edit’ option now leads to a separate form similar to
NewQuestionForm, but with the question’s data already loaded. After submitting
the edited question, the spam filter runs to predict if the edited question is
spam/non-spam. Editing the question sends an email to the forum administrators,
and the question creator, notifying them of the same. Selecting the ’Delete’ option
launches a confirmation modal, preventing unintentional deletion. Further
improvements included replacing NicEdit in AnswerQuestionForm with CKEditor,
and adding an image upload option to answers, by modifying
AnswerQuestionForm and Answer model in a way similar to the one in section 2.4.

2.8 Logging in and editing profile

While an anonymous user can explore the forum without logging in, posting any
content is reserved only for users having a FOSSEE Forums account. A minor
bug-fix included fixing the redirection where logging in took the user directly to
the home-page when the target page was a different one. If an anonymous user
chooses to post anything, he/she is first redirected to the login page.

An important concern in the website was that users could circumvent editing their
profile, resulting in accounts without any names, addresses or phone numbers. The
solution included checking if a user has a fullname through a custom function, and
using Django’s built-in @user passes test decorator to allow selective access to
certain sections of the forum. If any user chooses to post content without
providing their full name, the website redirects to the profile editing page.

6

Chapter 3

Moderator Interface

The moderator section is available only to privileged users, who have been
assigned as FOSSEE moderators by the website administrator. The administrator
does so by adding certain users to moderator groups in the Django admin panel.
Moderators are assigned specific FOSS categories corresponding to their expertise,
and to prevent compromising the quality of content, they do not have access to the
remaining categories. A moderator has complete control over the forum content,
with features like deletion/editing of questions and answers, and deletion of
comments. All posts regardless of their spam property are visible to
moderators, and a moderator can mark posts as spam/non-spam. A regular user
has an extra ’Moderator Panel’ option in the navigation bar, provided they’re
assigned as moderators.

This section relies on two concepts. The first is an @is moderator decorator,
which provides selective access to web-pages by checking if user belongs to any
moderator group(s). The second is a MODERATOR ACTIVATED variable in
settings.py, which controls the base template and displays different navigation
bars for a regular user and a moderator.

3.1 Home View

The moderator home view works in a similar way as the normal home page does.
The only differences are that instead of a carousel with all categories, only the
categories pertaining to the moderator are displayed. Moreover, the recent
questions table has an extra field displaying the spam property of a question. The
total question count in the home-page is modified to count only the questions
pertaining to moderator’s FOSS.

Moreover, the ’Ask a Question’ option has been removed from the carousel and the
navigation bar, because a moderator (unlike a regular user) is only supposed to
monitor and answer the existing posts and not ask new ones. The
MODERATOR ACTIVATED variable becomes active on entering this page, so now the
default navigation bar changes, and the original one is seen only on going back to
the User Panel.

7

3.2 Viewing a particular question

Like its corresponding section in the User Panel, it shows the details of a particular
question, along with a list of answers and comments. The difference is that a
moderator now has complete privileges to delete and edit any post in the page.

On the top-right corner, the edit and delete options for the question are visible.
’Edit’, just like its previous counterpart leads to a new form similar to
NewQuestionForm. ’Delete’, on the other hand, works a little differently. It
launches a confirmation modal with a textbox, for specifying the reason of
deletion. The moderator can then specify the reason for question deletion, so that
the user can re-post a question with better quality. A spam/non-spam badge is
added to the description, and clicking on it leads to a web-page with all the
spam/non-spam questions concerning the moderator.

Each answer has a delete and edit option in the top-right corner. The ’Edit’ option
loads an in-page form with NicEditor, and the editing of answers is handled
dynamically using the AJAX (Asynchronous JavaScript and XML) view
ajax answer update. The ’Delete’ option works in the same way as the above
mentioned ’Delete’ option for questions. In addition, a spam/non-spam badge is
added along with an edit option, which generates a modal to modify the spam
property of an answer. The modal uses the HTML element <select> to provide a
drop-down list of options. The comment section uses a hover button, where if the
moderator hovers over a particular comment, a delete option appears. This is to
reduce clutter in the web-page. Since this is the moderator section, no forms for
comment or answer upload are available.

3.3 Editing a question

The ’Edit Question’ option of the moderator section differs in subtle ways from
that of the User Section. The first difference is that it has an extra check-box
option to mark our question as spam/non-spam. Since the same form
(NewQuestionForm) is used to edit a question in both user and moderator section,
the spam check-box appears only when settings.MODERATOR ACTIVATED is true.
The other difference is that since this is a moderator editing a question, he/she is
given preference over the spam filter, and the question’s spam property is decided
only by the check-box.

3.4 Spam, non-spam and unanswered questions

The navigation bar provides options for viewing spam, non-spam and unanswered
questions. These extend from the ’View all questions’ section, with the
spam/non-spam sections having an extra parameter in their URL. The unanswered
section filters its questions in the HTML code using the condition
question.answer set.count() == 0.

8

Chapter 4

Spam Filter

A major component of the project was developing a spam filter, which would go
through any content before it is posted, predict if it is spam or not, and assign the
spam property to every post. With the internet manifesting in every aspect of our
lives, it has become extremely easy to broadcast content to a wide array of people.
This is a double-edged sword, because while it makes access to information easier,
it also leads to the proliferation of unwanted and irrelevant data. This can be
especially pronounced in a forum, where all users need to do is make an account to
post content.

Spam data can clutter websites, reducing focus on what is important and relevant.
It leads to wastage of user’s time, affects productivity, and in the case of a forum,
reduces a user’s trust. With this in mind, it is very important to reduce the spam
data posted on the website.

4.1 Reading the available data

It is true that the best machine-learning (ML) program is not the one which has
the best algorithm, but the one which has the most data. Data collection is
perhaps the most important part in developing an ML-algorithm, and significant
portions of time are spent on the same.

The best data we could get was the data from the forum itself. Using a training
dataset (a .xlsx file) given for the screening task, as well as all the forum
questions and answers, an xData list is constructed for the data itself, and a yData

list for the spam property. Reading the forum ensures that all kind of data is
considered, and using an additional .xlsx file allows the administrator to add
custom data for the ML-algorithm to train upon.

For reading data from the .xlsx file, the Python library openpyxl has been used.
The spam filter is re-trained whenever a moderator marks a non-spam question as
spam, and vice versa. It is also trained once each day using a cronjob in cron.py,
with the function train spam filter().

9

4.2 Data pre-processing

Figure 4.1: Steps of text pre-processing

In filtering of spam, the pre-processing of text is important for obtaining critical
and uniform data. In this step, data which is redundant or not useful is removed,
and words with the same root are generalized. Our data pre-processing involved
generalizing terms, removing words with length less than or equal to 2, removing
alphanumeric words. Finally, stopwords are removed and word stemming is
performed to reduce the vocabulary. Python’s regular expressions and the Natural
Language Toolkit (nltk) library is used.

Word in actual data Processed word
URL addresses httpaddr

E-mail addresses emailaddr
HTML <a> tags linktag

HTML tags imgtag
Digits and numbers number

$ dollar
! exclammark
? questmark
\n newline

\n\n blankline

Table 4.1: List of generalized words/terms

Other words are either removed if they are alphanumeric or in nltk’s stopword
corpus. Remaining words are also stemmed using SnowballStemmer in nltk to
reduce vocabulary. HTML tags apart from <a> and are simply removed.

10

4.3 Machine-learning algorithms used to train on

data

Training on the available data is the most important component of any
machine-learning program. In our spam filter, training categorizes the kind of data
which constitutes spam, and uses that categorization to predict future posts. A
variety of algorithms are available for spam filtering, but the ones most prevalent
are Support Vector Machines (SVMs) and Naive Bayes Filtering. Since
the available dataset was way skewed, the F-score instead of the accuracy is used
as a performance measure. I’ve used the LinearSVC library for testing SVM since
it gave the best results in my case and others1, and for Naive Bayes I’ve used the
MultinomialNB library. A total of 233 examples are used with a train-test ratio of
3:1.

Model Precision Recall F-score
LinearSVC 0.95 0.99 0.97

MultinomialNB 0.95 0.99 0.97

Table 4.2: Results with CountVectorizer

Model Precision Recall F-score
LinearSVC 0.97 0.99 0.98

MultinomialNB 0.91 1.0 0.95

Table 4.3: Results with TfIdfVectorizer

As observed, the most uniform results are given when LinearSVC is used with a
TfIdfVectorizer. A count vectorizer creates a simple dictionary of available
words in the training corpus, with each word having an equal weight. In contrast,
a TF-IDF (term frequency-inverse document frequency) vectorizer considers the
number of times a word appears in spam/non-spam emails and adjusts each word’s
weight accordingly, making it a better algorithm in our use context.

4.4 Predicting posts as spam/non-spam

Any string is first pre-processed using clean string function in cleanText.py,
following which our tf-idf vectorizer constructs a feature vector for the string. The
linear-SVM model then predicts if the string is ”Spam” or ”Not Spam”.

1Agarwal, Deepak, and Rahul Kumar. ”Spam Filtering using SVM with different Kernel Func-
tions”. International Journal of Computer Applications 136.5 (2016): 20-22. Web. 3 July 2018.

11

Chapter 5

Other modifications and fixes

A variety of other improvements and fixes were implemented on the original
codebase. Since this project was forked from the Spoken Tutorial repository, it
contained a lot of code pertinent only to spoken tutorial. Several HTML templates
and backend files contained instances of minute range, second range and
duration variables which was completely removed. Moreover, a significant amount
of code was not being used at all in the website and this was removed altogether.

Earlier, the number of views on a question updated whenever its corresponding
page was opened, regardless of the possibility that the same user can view the
question multiple times. Solving this included adding a userViews field to the
Question model, so a user can increase the question’s view count by only one.

The entire project was migrated first from Python 2.7 to Python 3.6.5, and then
from Django 1.9 to Django 2.0. The entire codebase was updated to conform to
PEP8 standards. A HoneyPotField() from the django-antispam library was
added to the forms to detect and block automatic spam spiders. Custom templates
for a 404 error and an ’unauthorized’ error were implemented, and a robots.txt

file was created. A total of 326 test cases were written, for all the models, forms
and views.

12

References

1. Chaitanya Baranwal. FOSSEE-Forum repository. GitHub.
https://github.com/chaitanyabaranwal/FOSSEE-Forum.

2. Sharma, Anjali, Manisha, and Dr. Rekha Jain. ”Data Pre-Processing in
Spam Detection”. IJTSE - International Journal of Science Technology and
Engineering 1.11 (2015): 33-34. Web. 3 July 2018.
http://www.ijste.org/articles/IJSTEV1I11008.pdf

3. ”TfIdf.” Wikipedia, Wikimedia Foundation, 3 July 2018,
https://en.wikipedia.org/wiki/Tfidf

4. ”Sklearn.svm.LinearSVC.” 1.4. Support Vector Machines - Scikit-Learn 0.19.1
Documentation,
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html.

5. ”Support Vector Machines.” 1.4. Support Vector Machines - Scikit-Learn
0.19.1 Documentation,
https://scikit-learn.org/stable/modules/svm.html.

6. ”Sklearn.feature extraction.Text.TfidfVectorizer.” 1.4. Support Vector Ma-
chines - Scikit-Learn 0.19.1 Documentation,
https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.
text.TfidfVectorizer.html.

7. ”Feature Extraction.” 1.4. Support Vector Machines - Scikit-Learn 0.19.1
Documentation,
https://scikit-learn.org/stable/modules/feature extraction.html.

8. ”Porting Python 2 Code to Python 3.” 4. More Control Flow Tools - Python
3.6.5 Documentation,
https://docs.python.org/3/howto/pyporting.html.

9. ”Upgrading Django to a newer version”, Django Documentation,
https://docs.djangoproject.com/en/2.0/howto/upgrade-version/.

13

https://github.com/chaitanyabaranwal/FOSSEE-Forum
http://www.ijste.org/articles/IJSTEV1I11008.pdf
https://en.wikipedia.org/wiki/Tf–idf
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/feature_extraction.html
https://docs.python.org/3/howto/pyporting.html
https://docs.djangoproject.com/en/2.0/howto/upgrade-version/

	Introduction
	User Section
	Home View
	Filtering questions by category
	Search bar
	Asking a new question
	Notifications
	Viewing profile and changing password
	Viewing a particular question
	Logging in and editing profile

	Moderator Interface
	Home View
	Viewing a particular question
	Editing a question
	Spam, non-spam and unanswered questions

	Spam Filter
	Reading the available data
	Data pre-processing
	Machine-learning algorithms used to train on data
	Predicting posts as spam/non-spam

	Other modifications and fixes
	References

