
Summer Fellowship Report

On

Mapper

Submitted by

Pritam Kumar Sahoo

Under the guidance of

Prof. Prabhu Ramachandran

Deparatment of Aerospace Engineering

IIT Bombay

July 19, 2018



Acknowledgment

I wish to express our profound gratitude to our internship guide prof. Prabhu
Ramchandran, Deparatment of Aerospace Engineering, IIT Bombay for his
constant support and supervision thorughout the internship.

I am highly indebted to my project mentor Mr. Akshen Doke and my project head
Mr. Mahesh Gudi for their continous support, supervision motivation and
guidance throughout the tenure of my project in spite of their hectic schedule who
truly remained driving spirit in my project and their experience gave me the light
in handling this project and helped me in clarifying the abstract concepts,
requiring knowledge and perception, handling critical situations and in
understanding the objective of my work.

1



Contents

1 Introduction 3

2 Data and Requirements 4
2.1 Data :: Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Requirements for this project . . . . . . . . . . . . . . . . . . . . . . 4
2.3 What we have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Upload Data 6

4 Data Processing 7
4.1 Displaying the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Modify Data :: Error Handling . . . . . . . . . . . . . . . . . . . . . 8

5 Plot the Data 11
5.1 India Map(State-wise) . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 3D Pie-Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2



Chapter 1

Introduction

Mapper is an Web Application for better visualization and processing of user’s
data. User will be asked to upload their data in .csv format. Mapper will clean the
data, modify them, and check and handle errors. Finally, user can take a look at
their data statistics plotted in State-wise INDIA Map and 3D Pie-Chart. User can
edit their data too.

3



Chapter 2

Data and Requirements

2.1 Data :: Components

We have mentioned about uploading data. So, what the so called ’data’ will contain
is :-

• Name of College

• Corresponding State

• Corresponding District

• Address

• International Dial Code, Email-id, etc.

Out of the components mentioned above, first four are of more importance and
including these columns is compulsory; as our main focus is to work on them.

2.2 Requirements for this project

This proect has been built upon :-

• Python

• Django

The following libraries have been used for many purpose :-

• Numpy

• Pandas

• Fuzzywuzzy

For developing the UI, we have used :-

• Bootstrap4

4



2.3 What we have

• College.csv

• College.csv contains a good number of clean data about various colleges in IN-
DIA with their corresponding state, district, address, email-id, International
Dial Code, etc. It is our refernce data. We all perform all the cleaning op-
eraiton and modification based upon the data this file contains. New clean
and modified data which the user will upload; will also be added to this data.

• Bisedes this file, we also have a database which will contain same set of data
the ’college.csv’ file has. But, when we perform data-fetch operation, we do
not go to database and grab the data; we fetch the data from the file instead.
After all the work is done, the new set of data which the user uploads will be
appended to this database. The database is being maintained because, if, by
mistake, we loose the file, we will still have access to the data we created.

5



Chapter 3

Upload Data

• Home page of our web appliaction will contain a browse button to let users
upload their file.

• Only ’.csv’ files are allowed.

• You can upload only when the file will be selected in correct format.

6



Chapter 4

Data Processing

4.1 Displaying the data

• After clicking on the ’Upload’ button, this page will be shown where user can
see their full data in nice format.

• User can edit their data too.

• After completing all work, user can download their clean data in excel format.

4.2 Data cleaning

PANDAS :- We have performed data-processing operations using pandas library.
It is an open-source, BSD-licensed library providing high-performance, easy-to-use
data structures and data analysis tool available in Python. We have taken help of
pandas Data-Frame object for handling users’ data. Cleaning operation has
been done based on two main issues :-

• Null Entry (NaN)

– If the ’college name’ of any record is found to be null; then we can not
further process the record anymore. Then it will be treated as wrong
entry, and the whole row will be deleted.

7



import pandas as pd

try:

file = csvfile.objects.get(id=pk)

except csvfile.DoesNotExist:

raise Http404

’’’Reading file contents as a dataframe object’’’

data = pd.read_csv(filename)

’’’Dropping values for null (NaN) entries for COLLEGES’’’

data = data.dropna(subset=[’COLLEGE NAME’])

• Duplicate Entry

– If more than two rows are found to be holding exactly same set of
records, then the first row will be kept and the rest will be dropped.

# Fetching all the columns of the dataframe

cols = data.columns.tolist()[1:]

# Dropping duplicate rows, while keeping the first one

data = data.drop_duplicates(cols, keep=’first’)

#Writing the data back to file

data.to_csv(str(file), index=False)

4.3 Modify Data :: Error Handling

FuzzyWuzzy :- We are checking errors for State, District, and College data only
with respect to the clean database(college.csv) we already have. For that we need
to perform string matching. We have used ’fuzzywuzzy’ library, which is run by
fuzzy string matching technique. It uses ’Levenshtein Distance’ to calculate the
differences between sequences in a simple-to-use package. Some of its usage :

>>> from fuzzywuzzy import fuzz

>>> from fuzzywuzzy import process

>>> fuzz.ratio("this is a test", "this is a test!")

97

>>> fuzz.partial_ratio("this is a test", "this is a test!")

100

>>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants",

"Dallas Cowboys"]

>>> process.extract("new York jets", choices, limit=2)

[(’New York Jets’, 100), (’New York Giants’, 78)]

8



Error checking and handling has been done in two ways :-

• Auto-correction

– If any state or district is found to be misspellt; we will auto-correct it
for the user. For that, we shall make a list of states or districts; which
will be our choices(mentioned above in fuzzy example), and then we’ll
find the percantage match between the individual choices and the
mispellt word; and assign the name with highest percentage to it.

>>> match = process.extractOne(misspelt word, choices,

scorer=fuzz.WRatio)

– If State or District name is found to be quite different (e.g.-No such
state exists); then we will find the corresponding college in the main
database, grab the name of the state, and assign it.

• Suggestion

– Auto-correction for State and District is quite simple and can be easily
done, as there are only 29 states in INDIA. But, if there is something
wrong with college information, or someone writes a college name in
abbreviated form(i.e.-Indian Institute of Technology - IIT or I.I.T.);
then it is very hard to auto-correct it, because there may exist many
colleges with same abbreviated form. Then we will give some siggestions
to user matching with it. If user selects one of the suggestions, then it is
nice; otherwise, we will treat the whole record as a completely new one,
and append to our existing database.

The following code performs abbreviation string matching -

res = []

for i in range(len(college_list)):

temp = ’’

for w in str(college_list[i]).split():

if w != ’AND’ and w != ’OF’ and w != ’THE’:

temp = temp + w[0].upper()

temp = temp[:summ+1]

ratio = fuzz.ratio(name, temp.upper()) # For abbreviation matching

res.append((college_list[i], ratio))

res = sorted(res, key=lambda x: x[1], reverse=True)

– Here how the ’Modify Data’ page looks like :-

9



10



Chapter 5

Plot the Data

5.1 India Map(State-wise)

We will plot the state-wise data statistics. For that, we will take advantage of
Google Geochart, which gives us a nice Heat map of INDIA, where we can see the
statistics of individual states, when hovering on it. It can be done by the following
piece of code.

google.load(’visualization’, ’1’, {’packages’: [’geochart’, ’corechart’]});

google.setOnLoadCallback(drawVisualization);

function drawVisualization() {

var data = google.visualization.arrayToDataTable(

{{ state_list | safe }}

);

var opts = {

region: ’IN’,

domain: ’IN’,

displayMode: ’regions’,

resolution: ’provinces’,

datalessRegionColor: ’transparent’,

width: 750,

height: 540,

colorAxis: {colors: [’#eeeeee’, ’black’]},

backgroundColor: ’white’,

defaultColor: ’#f5f5f5’,

};

var chart_div = document.getElementById(’visualization’);

var geochart = new google.visualization.GeoChart(chart_div);

geochart.draw(data, opts);

11



Particular javascript and CSS files should be included. Now, the data (’state-list’)
mentioned in the above piece of code looks like :-

state_list = [

[’State Code’, ’State’, ’No. of colleges’],

["IN-AP", "Andhra Pradesh", 121],

["IN-AR", "Arunachal Pradesh", 31],

["IN-AS", "Assam", 24],

["IN-BR", "Bihar", 36],

["IN-CT", "Chhattisgarh", 100],

["IN-GA", "Goa", 10],

.

[...]

.

]

Here’s a glimpse of the India Map :-

5.2 3D Pie-Chart

Google provides us with Pie-chart too. We can construct the chart with same set
of data (’state-list’), but different options (opts).

chart_divi = document.getElementById(’visualization’);

piechart = new google.visualization.PieChart(chart_divi);

piechart.draw(google.visualization.arrayToDataTable({{ pie_list | safe }}),

{title: ’% in India (No. of colleges per State)’ , is3D: true});

12



It displays the percentage stats per state.

Reference

• For pandas tutorial - https://pandas.pydata.org/pandas-docs/stable/10min.html

• For more about fuzzywuzzy - https://github.com/seatgeek/fuzzywuzzy

• More about Google geocharts - https://developers.google.com/chart/ interac-
tive/docs/gallery/geochart

13


