
Summer Fellowship Report
On

EDA Tools

Submitted by

Ashutosh Gangwar

B.Tech (Computer Science and Engineering)
MIET, Meerut

Mudit Joshi

B.Tech (Computer Science and Engineering)
PDPM IIITDM, Jabalpur

Under the guidance of

Prof. Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

July 5, 2018

Acknowledgment

The fellowship opportunity we had with FOSSEE Team was a great chance for us
to learn and experience professional software development. Therefore, we consider
ourselves lucky to have been provided with such a wonderful opportunity. We are
also grateful for having a chance to meet so many skilled and talented professionals
who led us through this internship.
Bearing in mind, we’d like to use this opportunity to express our deepest gratitude
and special thanks to Mr. Athul George, Ms. Gloria Nandihal and Ms. Usha
Vishwanathan who in spite of being extraordinarily busy with her/his duties, took
time out to hear, guide and keep us on the correct path and allowing us to carry
out our assigned tasks at their esteemed organization during the training.
We express our deepest thanks to Prof. Kannan M. Moudgalya for taking part in
useful decisions & giving necessary advices and guidance and for arranging all
facilities to make our life easier. We choose this moment to acknowledge his
contribution gratefully.
It is our radiant sentiment to place on record my best regards, deepest sense of
gratitude to Athul MS and Akshay NH for their help which was extremely valuable
for our work.
We perceive this opportunity as a big milestone in our career development. We
will strive to use gained skills and knowledge in the best possible way, and we will
continue to work on their improvement, in order to attain desired career
objectives. We also hope to continue cooperation with all of you in the future

1

List of Figures

1.1 Kicad Logo . 6
1.2 Kicad PcbNew OpenGL . 6
1.3 eSim Logo . 7
1.4 eSim Main Window . 7
1.5 NgSpice Logo . 8
1.6 Ngspice on KDE(Linux) . 8

2.1 Required Mock-up . 11
2.2 Patch Output . 12

3.1 Models in ngSpice . 15
3.2 LM741 . 16
3.3 LM741 - Schematic . 17
3.4 LM741 - Simulation Output . 18
3.5 LM733H - Internal Sub-circuit . 18
3.6 LM733H - Schematic . 19
3.7 LM733H - Simulation Output . 20

4.1 eSim Miscellaneous - PORT . 21
4.2 eSim - Adding sub-circuits . 22
4.3 eSim - Rename project . 22
4.4 Rename project dialog . 22
4.5 Default Workspace Option . 23
4.6 Briefcase icon : To change workspace 23
4.7 New way of simulation and Ngspice message 24

2

Contents

1 Introduction 5
1.1 KiCad . 6
1.2 eSim . 7
1.3 Ngspice . 8

2 KiCad Nightly Build (v5) 9
2.1 Build Process . 9

2.1.1 Build Tools . 9
2.1.2 Library Dependencies . 9
2.1.3 Building on Linux . 10

2.2 Bug : Autoplot PDF when saving projects 11
2.3 Bug : Add hotkey for opening context menu in eeschema 11
2.4 Bug : Inconsistent reference field parsing during editor copy 12

2.4.1 Description . 13
2.4.2 Solution . 13

2.5 Bug: Ability to open project folder in host operating system 13
2.5.1 Description . 13
2.5.2 Solution . 13

3 Digital Simulation and Component Parser 15
3.1 Digital Simulation in KiCad . 15
3.2 Parser to increase supported components in eSim 16

3.2.1 LM741 . 16
3.2.2 LM733H . 18

4 eSim 21
4.1 Increase External Pins for Sub-Circuits 21
4.2 Improve handling of unknown components 21
4.3 Introduced Rename Project Option 22
4.4 Introduced workspace functionality in eSim 23
4.5 Improve the simulation dependency problem in new ubuntu version . 23

5 Standalone Installer for eSim 25
5.1 eSim’s dependencies . 25

5.1.1 Python 2.7 . 25
5.1.2 PyQt4 . 25
5.1.3 Matplotlib . 25

3

5.1.4 NgSpice . 25
5.1.5 Kicad 4 . 25

5.2 PyInstaller . 26
5.3 Installation Packages . 26

5.3.1 Linux . 26
5.3.2 Windows . 27

6 Conclusion and future work 28

4

Chapter 1

Introduction

FOSSEE (Free and Open Source Software in Education) project promotes the use of
free and open-source tools to improve the quality of education in our country. They
aim to reduce dependency on proprietary software in educational institutions. They
encourage the use of FOSS tools through various activities to ensure that commer-
cial software is replaced by equivalent FOSS tools. They also develop new FOSS
tools and upgrade existing tools to meet requirements in academia and research. In-
corporated to FOSSEE program, this fellowship’s main aim is to introduce students
to the FOSS in various engineering fields and to become a part of this big community.

We were selected for this fellowship on the basis of screen tasks submitted by us. As
part of fellowship program, we got opportunity to work on some of the major open
source electronic design automation softwares and were introduced to the Technol-
ogy Stack they are build on. These technologies include C/C++ Programming,
Python, wxWidget, wxPython, PyQt4, etc.

At the beginning of the fellowship we formulated several learning goals, which we
wanted to achieve:

• To understand the functioning and working conditions of a government organ-
isation

• To see what it is like to work in a professional environment

• To see if this kind of work is a possibility for our future career

• To use our knowledge and skills and to further increase them

• To learn about organising an open source project

• To enhance our communication skills

• To strengthen professional and social network

This report is a short description of our 48 days fellowship under FOSSEE. This
report contains our activities that have contributed to achieve a number of our stated
goals. Following is the description of the softwares we worked on and changes we
have done in them, concluding with the experience we gained.

5

1.1 KiCad

KiCad is a free software suite for electronic design automation (EDA). It facilitates
the design of schematics for electronic circuits and their conversion to PCB designs.
KiCad was originally developed by Jean-Pierre Charras. It features an integrated
environment for schematic capture and PCB layout design. Tools exist within the
package to create a bill of materials, artwork, Gerber files, and 3D views of the PCB
and its components.
The Kicad suit has 5 main parts:

• KiCad – the project manager.

• Eeschema – the schematic capture editor.

• Pcbnew – the PCB layout program. It also has a 3D view.

• GerbView – the Gerber viewer.

• Bitmap2Component – tool to convert images to footprints for PCB artwork.

Figure 1.1: Kicad Logo

Figure 1.2: Kicad PcbNew OpenGL

6

http://kicad-pcb.org/

1.2 eSim

eSim (previously known as Oscad / FreeEDA) is an open source EDA tool for
circuit design, simulation, analysis and PCB design. It is an integrated tool built
using open source software such as KiCad and Ngspice.eSim is released under GNU
General Public License version 3.
eSim offers similar capabilities and ease of use as any equivalent proprietary software
for schematic creation, simulation and PCB design, without having to pay a huge
amount of money to procure licenses. Hence it can be an affordable alternative to
educational institutions and SMEs. It can serve as an alternative to commercially
available/ licensed software tools like OrCAD, Xpedition and HSPICE. The eSim
suit Includes:

• KiCad the complete KiCad suit.

• KiCadtoNgSpice - Generate Ngspice netlist.

• NgSpice Simulation - Simulate Circuit using NgSpice backend

• Model Editor

• Subcircuit Editor - Design sub-circuits for IC’s

• NGHDL - Convert VHDL to Ngspice

• Modelica Converter - Convert Modelica files to Schematic

• Modelica Optimization

Figure 1.3: eSim Logo

Figure 1.4: eSim Main Window

7

https://esim.fossee.in/
http://www.kicad-pcb.org
http://ngspice.sourceforge.net/

1.3 Ngspice

Ngspice is a mixed-level/mixed-signal circuit simulator. It is the open-source suc-
cessor of Spice3f5. A small group of maintainers and the community of motivated
users contribute to the Ngspice project by providing new features, enhancements
and bug fixes.

Ngspice is based on three free-software packages: Spice3f5, Xspice and Cider1b1:

• SPICE is the origin of all electronic circuit simulators, its successors are widely
used in the electronics community.

• Xspice is an extension to Spice3 that provides additional C language code
models to support analog behavioral modeling and co-simulation of digital
components through a fast event-driven algorithm.

• Cider adds a numerical device simulator to Ngspice. It couples the circuit-level
simulator to the device simulator to provide enhanced simulation accuracy (at
the expense of increased simulation time). Critical devices can be described
with their technology parameters (numerical models), all others may use the
original Ngspice compact models.

Ngspice is, anyway, more than the simple sum of the packages above, as many
people are contributing to the project with their experience, their bug fixes and their
improvements giving Ngspice additional features and improved robustness.

Figure 1.5: NgSpice Logo

Figure 1.6: Ngspice on KDE(Linux)

8

Chapter 2

KiCad Nightly Build (v5)

2.1 Build Process

Kicad relies on various build tools and library dependencies in order perform a
variety of tasks related to Electronic Design Automation.

2.1.1 Build Tools

Cmake

Kicad uses Cmake to generate native makefiles for various platforms.

SWIG

SWIG is used to generate the Python scripting language extensions for KiCad.
SWIG is not required if you are not going to build the KiCad scripting extension.

2.1.2 Library Dependencies

wxWidgets

wxWidgets is the graphical user interface (GUI) library used by KiCad. The current
minimum version is 3.0.0. However, 3.0.2 should be used whenever possible as there
are some known bugs in prior versions that can cause problems on some platforms.

Boost C++ Libraries

The Boost C++ library is required only if you intend to build KiCad with the system
installed version of Boost instead of the default internally built version. If you use
the system installed version of Boost, version 1.56 or greater is required.

OpenGL Extension Wrangler

The OpenGL Extension Wrangler is an OpenGL helper library used by the KiCad
graphics abstraction library and is always required to build KiCad.

9

https://cmake.org/
http://www.swig.org/
https://www.wxwidgets.org/
http://www.boost.org/
http://glew.sourceforge.net/

OpenGL Mathematics Library

The OpenGL Mathematics Library is an OpenGL helper library used by the KiCad
graphics abstraction library and is always required to build KiCad.

OpenGL Utility Toolkit

The OpenGL Utility Toolkit is an OpenGL helper library used by the KiCad graph-
ics abstraction library [GAL] and is always required to build KiCad.

Cairo 2D Graphics Library

The Cairo 2D graphics library is used as a fallback rendering canvas when OpenGL
is not available and is always required to build KiCad.

Python

The Python programming language is used to provide scripting support to KiCad.
It needs to be installed unless the KiCad scripting build configuration option is
disabled.

wxPython

The wxPython library is used to provide a scripting console for Pcbnew. It needs
to be installed unless the wxPython scripting build configuration option is disabled.

OpenCascade Community Edition

The OpenCascade Community Edition is used to provide support for loading and
saving 3D model file formats such as STEP.

ngSpice

The Ngspice library is used to provide Spice simulation support in the schematic
editor.

2.1.3 Building on Linux

To build Kicad from source, first, Cmake is used to generate the makefile for target
platform

cd <kicad source mirror>

mkdir -p build/debug

cmake -DCMAKE_BUILD_TYPE=Release ../../

Once Cmake finishes generating makefile, GNU make is used to compile the source
code on the target platform

10

http://glm.g-truc.net/
https://www.opengl.org/resources/libraries/glut/
http://cairographics.org/
http://www.python.org/
http://wxpython.org/
https://github.com/tpaviot/oce
https://ngspice.sourceforge.net/

make

sudo make install

By default, Kicad is installed on system root in Linux. Installation path can be
changed by using following while generating makefile using Cmake

cmake ... -DCMAKE_INSTALL_PREFIX=<desired path> ...

2.2 Bug : Autoplot PDF when saving projects

This Bug : # 1636549 is a feature addition in Kicad which is requested by a user
of Kicad. It is sometime necessary to have the schematic in a handy format (like
pdf) which can be easily accessed by other non-electric background people. So the
requirement is to automatically plot the schematic in PDF format whenever the user
saves the schematic, as the default plot method is time consuming.

Bug Link : https://bugs.launchpad.net/kicad/+bug/1636549

Patch Link : https://launchpadlibrarian.net/375310564/0001-Eeschema-Adding-Autoplot-PDF-when-saving-project.
patch

Figure 2.1: Required Mock-up

The schematic will be plot in PDF format and with scaling the color and the wire
width will be taken from the previous setting keeping in mind that they are user
defined property i.e. every user might have different requirement of PDF

2.3 Bug : Add hotkey for opening context menu

in eeschema

This Bug : # 1663595 is also a feature addition in eeschema in which the user
wanted to have a shortcut to open the context menu for fast use of the software.

11

https://bugs.launchpad.net/kicad/+bug/1636549
https://launchpadlibrarian.net/375310564/0001-Eeschema-Adding-Autoplot-PDF-when-saving-project.patch
https://launchpadlibrarian.net/375310564/0001-Eeschema-Adding-Autoplot-PDF-when-saving-project.patch

The assigned hot-key for this function is ’D’. The context menu open a bit below
the cursor position.

Bug Link : https://bugs.launchpad.net/kicad/+bug/1663595

Patch Link : https://bugs.launchpad.net/kicad/+bug/1663595/+attachment/
5159628/+files/0001-Eeschema-Add-shortcut-for-opening-context-menu.patch

Figure 2.2: Patch Output

Solution : Following is the Code Snippet to generate context menu

case HK_RIGHT_CLICK:

{

wxMenu MasterMenu;

wxPoint pos1 = wxGetMousePosition() , pos2 = GetScreenPosition();

wxPoint pos = pos1 - pos2;

if(!OnRightClick(aPosition, &MasterMenu))

return false;

AddMenuZoomAndGrid(&MasterMenu);

m_canvas->SetIgnoreMouseEvents(true);

PopupMenu(&MasterMenu, pos);

m_canvas->SetIgnoreMouseEvents(false);

}

2.4 Bug : Inconsistent reference field parsing dur-

ing editor copy

The bug was posted on Kicad’s issue tracker as Bug#1748789 on Launchpad.

12

https://bugs.launchpad.net/kicad/+bug/1663595
https://bugs.launchpad.net/kicad/+bug/1663595/+attachment/5159628/+files/0001-Eeschema-Add-shortcut-for-opening-context-menu.patch
https://bugs.launchpad.net/kicad/+bug/1663595/+attachment/5159628/+files/0001-Eeschema-Add-shortcut-for-opening-context-menu.patch
https://bugs.launchpad.net/kicad/+bug/1748789

2.4.1 Description

“Copy seems to parse the reference such that the prefix is treated as everything
up to and including the last non-numeric character. This was a pleasant surprise
after the behaviour of KiCAD 4, and should be kept. However, edit seems to parse
the reference differently such that the prefix is treated as everything up to but not
including the first non-numeric character. These are inconsistent. I would like to
have the prefix for both operations being everything up to and including the last
non-numeric character.”

2.4.2 Solution

From the bug description, it is clear that the required behaviour should parse the
last numeric value for the users to be easily able to edit it.

2.5 Bug: Ability to open project folder in host

operating system

This is not a bug but a feature request in Kicad. The request is filed as Bug#1584977
on Launchpad.

2.5.1 Description

“Many IDEs and other project-based tools let you open the project’s root folder
(directory) in the host OS’s file manager. I think it would be great if KiCad also
had this ability.”

2.5.2 Solution

A simple solution this problem is using Cmake to determine the target operating
system and using native shell commands to open project directory using default file
manager software.

To determine the target operating system, following constants can be used

#if defined(__linux__) || defined(__FreeBSD__)

#define OPEN_FM_CMD_BASE "xdg-open"

#elif defined(__WXMAC__)

#define OPEN_FM_CMD_BASE "open"

#elif defined(_WIN32)

#define OPEN_FM_CMD_BASE "explorer"

#else

#error "Unsupported platform!"

#endif

13

https://bugs.launchpad.net/kicad/+bug/1584977

When the compiler pre-processes above code, a constant OPEN FM CMD BASE will
be defined with its value set to appropriate command that can be used to open file
explorer on the target operating system.

Now, we execute the obtained command with proper arguments to open project
directory in operating system’s default file explorer

wxExecute(wxT(OPEN_FM_CMD_BASE " " + project_dir), wxEXEC_ASYNC, NULL);

14

Chapter 3

Digital Simulation and
Component Parser

This Chapter describes about the simulation in Ngspice and about the component
libraries of Kicad and eSim , similarities and differences between them. Problem
description is to find out the reason behind the failure of Ngspice in simulating the
digital circuits and some analog circuits in Kicad and to find out if we can use the
components of Kicad in eSim to increase the eSim library.

3.1 Digital Simulation in KiCad

Figure 3.1: Models in ngSpice

Digital simulation is a problem com-
ing in Kicad on simulating the circuits
which works perfectly on eSim. Initially
it was suggested that there must be
some problem in the way Kicad converts
the schematic to its respective generic
netlist. On studying he kicad code base
it is found that there is some changes in
the way kicad identifies the connections
from v4 (used in eSim) to v5 (new sta-
ble version of kicad). But it is not the
only problem, because on changing the
connection accordingly the same error
pops i.e. Error:model not found...

On referring to Ngspice manual, it is
found that there are some specific com-
ponents which are identified as models
in Ngspice which are shown.

The problem found out is that for mod-
els other than those mention above
Ngspice is not able to identify them, and
hence error. For such case Ngspice uses its feature of sub-circuits to make internal

15

http://ngspice.sourceforge.net/docs/ngspice-manual.pdf

circuits for these components. Also among the shown components, basic compo-
nents like R,C,L are automatically identified by Ngspice but for others i.e. Diodes
and Transistors you have to specify them using .model function.

In eSim, the Kicad to Ngspice Converter uses some of the hard-coded values for
these models (stored in .xml format) specified in program and add these lines to
the generic spice netlist. Also, in eSim for the models not specified in it, will fail to
simulate. So the user have to make sub-circuits for these models in order to make
them work.

Even from the discussion in official KiCad Forum, it is suggested to make the sub-
circuits for the components, to make them work.

3.2 Parser to increase supported components in

eSim

This section discuss about the suggestion to increase the no of components in eSim
from Kicad by making a parser which convert the symbols from Kicad format to
eSim format. It is suggested to take help from the Pspice to Kicad parser made
earlier. On research it is found that the component files of Kicad and eSim are
almost same. In fact eSim uses the eeschema software of Kicad suit for schematic
designing, so the components of Kicad can be easily run on eSim, there might be
only warning to uses a newer version of eeschema but it does not have any such
effect in the running of the program. And even the parser which was made earlier
converts files from Pspice to Kicad which are two completely different softwares (in
fact competitors), whereas eSim is made on Kicad.
Hence, it is conclude that there is no need to make a parser. In support to our
conclusion , few components are added to eSim from Kicad which earlier don’t work
in eSim. These components include LM741, LM733H.

3.2.1 LM741

Figure 3.2: LM741

The LM741 series are general-purpose opera-
tional amplifiers which feature improved perfor-
mance over industry standards like the LM709.
They are direct, plug-in replacements for the
709C, LM201, MC1439, and 748 in most appli-
cations.
The amplifiers offer many features which make
their application nearly foolproof: overload pro-
tection on the input and output, no latch-
up when the common-mode range is ex-
ceeded, as well as freedom from oscillations.

16

https://forum.kicad.info/t/digital-simulation/11072
https://github.com/FOSSEE/Pspice-Kicad-Converter

Sub-circuit file of LM741

* OPAMP MACRO MODEL (INTREMEDIATE LEVEL)

* IN- IN+ VEE OUT VCC

.SUBCKT lm741 18 2 1 102 19 81 101 20

Q1 5 1 7 NPN

Q2 6 2 8 NPN

RC1 101 5 95.49

RC2 101 6 95.49

RE1 7 4 43.79

RE2 8 4 43.79

I1 4 102 0.001

* OPEN-LOOP GAIN, FIRST POLE AND SLEW RATE

G1 100 10 6 5 0.0104719

RP1 10 100 9.549MEG

CP1 10 100 0.0016667UF

*OUTPUT STAGE

EOUT 80 100 10 100 1

RO 80 81 100

* INTERNAL REFERENCE

RREF1 101 103 100K

RREF2 103 102 100K

EREF 100 0 103 0 1

R100 100 0 1MEG

.model NPN NPN(BF=50000)

.ENDS lm741

Figure 3.3: LM741 - Schematic

17

Figure 3.4: LM741 - Simulation Output

3.2.2 LM733H

Figure 3.5: LM733H - Internal
Sub-circuit

The LM733/LM733C is a two-stage, differ-
ential input, differential output, wide-band
video amplifier. The use of internal series-
shunt feedback gives wide bandwidth with
low phase distortion and high gain stability.
Emitter-follower outputs provide a high cur-
rent drive, low impedance capability. Its
120 MHz bandwidth and selectable gains of
10, 100 and 400, without need for frequency
compensation, make it a very useful cir-
cuit for memory element drivers, pulse am-
plifiers, and wide band linear gain stages.

Sub-circuit file of LM733H

* Subcircuit LM733H

.subckt LM733H net-_q1-pad2_ net-_q1-pad3_ net-_r2-pad2_ net-_q3-pad3_

net-_r6-pad2_ net-_q3-pad2_ net-_r11-pad2_ net-_q10-pad1_ net-_q8-pad1_

net-_q10-pad3_

r2 net-_q1-pad3_ net-_r2-pad2_ 50

r6 net-_q3-pad3_ net-_r6-pad2_ 50

r3 net-_r2-pad2_ net-_q2-pad1_ 590

18

r7 net-_r6-pad2_ net-_q2-pad1_ 590

r4 net-_q2-pad3_ net-_r11-pad2_ 300

r9 net-_q4-pad3_ net-_r11-pad2_ 1.4k

r11 net-_q6-pad3_ net-_r11-pad2_ 300

r15 net-_q8-pad3_ net-_r11-pad2_ 400

r16 net-_q11-pad3_ net-_r11-pad2_ 400

r1 net-_q10-pad1_ net-_q1-pad1_ 2.4k

r5 net-_q10-pad1_ net-_q3-pad1_ 2.4k

r10 net-_q10-pad1_ net-_q10-pad2_ 1.1k

r14 net-_q10-pad1_ net-_q7-pad1_ 1.1k

r8 net-_q10-pad1_ net-_q11-pad2_ 10k

r12 net-_q8-pad1_ net-_q1-pad1_ 7k

r13 net-_q10-pad3_ net-_q3-pad1_ 7k

q1 net-_q1-pad1_ net-_q1-pad2_ net-_q1-pad3_ npn

q3 net-_q3-pad1_ net-_q3-pad2_ net-_q3-pad3_ npn

q7 net-_q7-pad1_ net-_q1-pad1_ net-_q5-pad3_ npn

q5 net-_q10-pad2_ net-_q3-pad1_ net-_q5-pad3_ npn

q9 net-_q10-pad1_ net-_q7-pad1_ net-_q8-pad1_ npn

q10 net-_q10-pad1_ net-_q10-pad2_ net-_q10-pad3_ npn

q11 net-_q10-pad3_ net-_q11-pad2_ net-_q11-pad3_ npn

q8 net-_q8-pad1_ net-_q11-pad2_ net-_q8-pad3_ npn

q6 net-_q5-pad3_ net-_q11-pad2_ net-_q6-pad3_ npn

q4 net-_q11-pad2_ net-_q11-pad2_ net-_q4-pad3_ npn

q2 net-_q2-pad1_ net-_q11-pad2_ net-_q2-pad3_ npn

.model npn NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=400 Ne=1.307

Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=7.306p

Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 Tr=46.91n Tf=411.1p

Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.ends LM733H

Figure 3.6: LM733H - Schematic

19

Figure 3.7: LM733H - Simulation Output

Conclusion

So after all research and discussion it is concluded that the solution for both digital
simulation and parser problem is to make the sub-circuit for every components
required in the circuit. Also, Kicad being a PCB designing focused software give
more preference to the shape of IC and the positioning of pins in the IC rather
than what is the internal circuitry of the component. Also the above sub-circuits
for LM741 and LM733H support the solution. But the problem which arise in this
case is the limited no of ports to represent pins of the sub-circuit (which is only 8),
whose solution is discussed in the next chapter.

20

Chapter 4

eSim

This chapter emphasises on the work done on eSim EDA software, bug fixes, feature
additions, and improvement in working.

4.1 Increase External Pins for Sub-Circuits

The problem is inability to make sub-circuits of components having more than 8
pins. It is found that the component port that represents pins of the IC is only 8
so for the ICs having more than 8 pins, their sub-circuits cannot be made.

Figure 4.1: eSim Miscellaneous - PORT

It is found that the port component, in eSim Miscellaneous.lib library file have
only option for 8 ports. By increasing them in the .lib file solved the problem.
Now the user can make sub-circuits for ICs having up to 26 ports which in turn
open the way to increase the number of components in eSim to a large extent.
To test the change sub-circuits of LM733H Operational Amplifier was made, whose
sub-circuit, schematic, and simulation is shown in previous chapter.

Link to commit : https://github.com/FOSSEE/eSim/commit/d48bcd6

4.2 Improve handling of unknown components

Unknown components produced an error in eSim when trying to convert Spice netlist
into Ngspice netlist. This behaviour was logically flawed because many unknown
components have their sub-circuits defined as separate netlists that can be used

21

https://github.com/FOSSEE/eSim/commit/d48bcd6

while running simulations. To correct this behaviour, we had to first identify all
the unknown components in the Spice netlist and then mark them as external so
Ngspice could expect an external netlist for them.

Figure 4.2: eSim - Adding sub-circuits

4.3 Introduced Rename Project Option

eSim was missing a key option to rename projects. Since all files in eSim projects
are named after project names, it can be a little overwhelming for users to manually
rename each project file manually.

This new Rename Project option in project explorer would automate the process
of renaming all project files for the users of eSim.

Figure 4.3: eSim - Rename project

Figure 4.4: Rename project dialog

22

4.4 Introduced workspace functionality in eSim

The workspace feature in eSim is not functioning properly. There is no option for
user the set default workspace, at every start it will ask for the workspace. And also
even if we change the workspace, eSim will show the default software to the user
and lastly project are not workspace specific i.e. for any workspace projects of all
workspaces will be shown.
Solution for this problem involves the addition of Default Workspace option in the
workspace dialog box, and adding the ability to change the workspace after esim is
started.

Figure 4.5: Default Workspace Op-
tion

Figure 4.6: Briefcase icon : To change
workspace

To make projects separated according to workspace, the .projectexplorer file which
identifies the projects opened is moved from home folder to the respective workspace
folder which make it easier for eSim to classify the projects, and also saves time to
unnecessarily process other workspace files.

Link to commit : https://github.com/FOSSEE/eSim/commit/4347e5d
: https://github.com/FOSSEE/eSim/commit/316e3e7

4.5 Improve the simulation dependency problem

in new ubuntu version

This problem appears in newer version of Linux Ubuntu (like 18.04). When the user
will run simulation for the first time in a project it will not work. Reason being, the
function uses Ngspice to simulate and then stores it’s value in files plot data i.txt

and plot data v.txt which is used to plot graph in eSim. Ngspice uses xterm
terminal emulator to run, which is removed from newer versions of Linux Ubuntu.
Hence the file not found error will be shown.
This problem is also marked as #Need Permanent Solution in the code.

23

https://github.com/FOSSEE/eSim/commit/4347e5d
https://github.com/FOSSEE/eSim/commit/316e3e7

Figure 4.7: New way of simulation and Ngspice message

Now all the information related to simulation will be shown in eSim window :

• Graph output will come as earlier

• Ngspice processing message will come in eSim console window.

• User don’t need to refer Ngspice console.

Link to commit : https://github.com/FOSSEE/eSim/commit/8699521
: https://github.com/FOSSEE/eSim/commit/231cd1f

24

https://github.com/FOSSEE/eSim/commit/8699521
https://github.com/FOSSEE/eSim/commit/231cd1f

Chapter 5

Standalone Installer for eSim

eSim is written in Python 2 and relies on various Python related dependencies to
work correctly. In-order for users to be able to install eSim, they had to make sure
that several Python related and various other dependencies were installed on their
system beforehand. This chapter focuses on overcoming these problems by creating
stand-alone executables and native installation packages for eSim.

5.1 eSim’s dependencies

5.1.1 Python 2.7

eSim is written in Python and requires Python 2.7 interpreter to run.

5.1.2 PyQt4

eSim uses PyQt4 GUI toolkit for its user interface. It is a Python related dependency
for eSim.

5.1.3 Matplotlib

Matplotlib is required for plotting simulations in eSim. It is also a Python related
dependency for eSim.

5.1.4 NgSpice

The Ngspice library is used to provide Spice simulation support in the schematic
editor. It is an external dependency.

5.1.5 Kicad 4

eSim uses Kicad 4 for schematic designs of circuits. Kicad 4 is also an external
dependency.

25

5.2 PyInstaller

PyIntaller is a program that freezes (packages) Python programs into stand-alone
executables, under Windows, Linux, Mac OS X, FreeBSD, Solaris and AIX. Its
main advantages over similar tools are that PyInstaller works with Python 2.7 and
3.3—3.6, it builds smaller executables thanks to transparent compression, it is fully
multi-platform, and use the OS support to load the dynamic libraries, thus ensuring
full compatibility.

The main goal of PyInstaller is to be compatible with 3rd-party packages out-of-
the-box. This means that, with PyInstaller, all the required tricks to make external
packages work are already integrated within PyInstaller itself so that there is no
user intervention required.

With PyInstaller, a stand-alone executable can be created for eSim which wouldn’t
require any Python-related dependencies to be installed on user’s system. With
Python related dependencies not required anymore, external dependencies such as
Kicad 4 and ngspice can be installed using native installation packages provided by
their developers.

5.3 Installation Packages

5.3.1 Linux

Creating Linux installation packages can be lengthy process if not done with the
right tools. Since Linux has so many distributions and almost all of them have
a different installation package format, creating installation package for each indi-
vidual distribution can be a tedious part of the development cycle. To avoid the
tediousness, several open-source tools like FPM can be used.

FPM

FPM is an open-source utility tool written to simplify the process of packaging soft-
wares for various Linux distributions. FPM makes it possible to pack a software’s
binary into installation package with a single command.

With FPM, following installation packages can be generated

Debian based Package (.deb)

FPM can be used to generate a fully functional installation package for Debian based
Linux distributions such as Linux Ubuntu, Linux Mint and Debian itself.

External dependencies can be passed to FPM with --depends flag. eSim has only
two external dependencies, i.e., Kicad and Ngspice.

Following command can be issued to pack eSim binaries into Debian package

26

http://www.pyinstaller.org/
https://github.com/jordansissel/fpm

fpm --output-type deb \

--input-type dir --force \

--package "dist/$NAME.deb" \

--name "$NAME" --version "$VERSION" \

--license "$LICENSE" --vendor "$VENDOR" \

--description "$DESCRIPTION" --url "$URL" \

--depends "kicad" --depends "ngspice" \

--deb-dist "stable" \

--deb-no-default-config-files ./dist/esim=/opt \

esim-linux.desktop-template=/usr/share/applications/esim.desktop \

esim-launcher.sh=/usr/local/bin/esim

Red Hat Linux based Package (.rpm)

FPM can be used to generate a fully functional installation package for Red Hat
based Linux distributions such as Fedora, OpenSUSE and CentOS.

External dependencies can be passed to FPM with --depends flag. eSim has only
two external dependencies, i.e., Kicad and Ngspice.

Following command can be issued to pack eSim into rpm package

fpm --output-type rpm \

--input-type dir --force \

--package "dist/$NAME.rpm" \

--name "$NAME" --version "$VERSION" \

--license "$LICENSE" --vendor "$VENDOR" \

--description "$DESCRIPTION" --url "$URL" \

--depends "kicad" --depends "ngspice" \

./dist/esim=/opt \

esim-linux.desktop-template=/usr/share/applications/esim.desktop \

esim-launcher.sh=/usr/local/bin/esim

Shell Script Installer

A generic self extracting shell script based installation package can also be generated
using FPM. A shell script based installer should be able to install itself on any Linux
based operating system by default.

5.3.2 Windows

Creating a Windows installer requires use of packaging software called InnoSetup.
The setup script esim-setup-win.iss will first add eSim binary files and the kicad
and ngspice compressed files to the setup, then registry will be added to run kicad
(v4) and ngspice (27) via cmd and finally deletes compressed files. Inno setup
compiler is used to change and compile setup script. Final setup will output in
./dist directory.

27

Chapter 6

Conclusion and future work

After the completion of our fellowship, we had been exposed to open-source and
programmer’s working life. Throughout our fellowship, we could understand more
about the definition of an IT professionals and software engineers, and prepare
ourselves to become responsible and innovative professionals and software engineers
in future. Along our training period, we realized that observation is a key element to
find out the root cause of a problem. Not only for our project but daily activities too.
During my project, we cooperated with our colleagues and mentors to determine
the problems. Moreover, the project indirectly helped us to learn independently,
discipline ourselves, be considerate/patient, self-trust, take initiative and the ability
to solve problems. Besides, our communication skills were strengthened as well when
communicating with others. During our training period, we have received criticism
and advice from mentors and our colleagues when mistakes were made. However,
those advices are useful guidance for us to change ourselves and avoid ourselves
from repeating the same mistakes again. Apart from that, we had also developed
our programming skills through various programs that we had done. This also helps
sharpen our skills in Python since most of the programs were done in Python 2
environment. In sum, the activities that we had learned during our fellowship really
are useful for us in future to face challenges in a working environment. Throughout
the fellowship, we found that several things are important:

Critical and Analytical Thinking

To organize our tasks and assignment, we need to analyze our problems and as-
signment, and to formulate a good solution to the problem. We would have to set
contingency plan for the solution, so that we are well prepared for the unforeseeable
situations.

Time Management

As overall technician and programmer are always racing against tight timeline and
packed schedule, a proper time management will minimize facing overdue deadlines.
An effective time management allows us to do our assignment efficiently and meet
our schedules. Scheduling avoids time wastage and allows us to plan ahead, and
gaining more as a result.

28

Goal Management

Opposing to a Herculean goal seemed to be reachable at first sight, it is better
to sub-divide the goals to a few achievable tasks, so that we will be gaining more
confidence by accomplishing those tasks.

Colleague Interactions

In working environment, teamwork is vital in contributing to a strong organiza-
tion. Teamwork is also essential in reaching the goals of the organization as an
entity. Thus, communicating and sharing is much needed in the working environ-
ment. Therefore, we should be respecting each other in work, and working together
as a team, instead of working alone. This is because working together as a team is
easier in reaching our targets, rather than operating individually.

We would like to once again appreciate everyone who has made our fellowship a
superb experience

29

	Introduction
	KiCad
	eSim
	Ngspice

	KiCad Nightly Build (v5)
	Build Process
	Build Tools
	Library Dependencies
	Building on Linux

	Bug : Autoplot PDF when saving projects
	Bug : Add hotkey for opening context menu in eeschema
	Bug : Inconsistent reference field parsing during editor copy
	Description
	Solution

	Bug: Ability to open project folder in host operating system
	Description
	Solution

	Digital Simulation and Component Parser
	Digital Simulation in KiCad
	Parser to increase supported components in eSim
	LM741
	LM733H

	eSim
	Increase External Pins for Sub-Circuits
	Improve handling of unknown components
	Introduced Rename Project Option
	Introduced workspace functionality in eSim
	Improve the simulation dependency problem in new ubuntu version

	Standalone Installer for eSim
	eSim's dependencies
	Python 2.7
	PyQt4
	Matplotlib
	NgSpice
	Kicad 4

	PyInstaller
	Installation Packages
	Linux
	Windows

	Conclusion and future work

