7

Summer Fellowship Report
On

Workshop Integration

Submitted by

T Yochan Sandesh

Under the guidance of

Prof. Prabhu Ramachandran
Department of Aerospace Engineering
IIT Bombay

August 1, 2018

Acknowledgment

The time I spent in FOSSEE, IIT Bombay as an intern from May 2018 to July
2018 was a memorable one for me as it was rich in experience sharing and helped
me discover my potential. I have had so many rich experiences and opportunities
that I personally believe will forever shape and influence my professional life while
fostering personal growth and development.

This report would not have been possible without the contribution and
collaboration of others. My sincere gratitude:

To The Prof. Kannan M. Moudgalya, Department of Chemical Engineering,
IIT Bombay), the PI of FOSSEE, for giving us the opportunity to do an
internship within the organization.

To The Prof. Prabhu Ramchandran, Deparatment of Aerospace Engineering,
IIT Bombay our internship guide for his constant support and supervision
thorughout the internship.

To the Senior Project Manager, FOSSEE, Mrs. Usha Viswanathan along
with the FOSSEE team at II'T Bombay. With their patience and openness
they created an enjoyable working environment.

To the Project mentor Mr. Binson Babu and Project head Mr. Mahesh Gudi
for their continous support, supervision motivation and guidance throughout
the tenure of my project in spite of their hectic schedule who truly remained
driving spirit in my project and their experience gave me the light in
handling this project and helped me in clarifying the abstract concepts,
requiring knowledge and perception, handling critical situations and in
understanding the objective of my work.

To the other research engineers Mr. Akshen Doke and Mr. P. Aditya for
their constant support and guidance by providing me with the knowledge
required to complete my project

To all our fellow colleagues, with whom I have completed the fellowship. We
experienced great things together.

To all of you, I extend my deepest gratitude.

Contents

1 Introduction

2 Area of concern
2.1 Integration
2.2 Automation

3 Design of the project

3.1 OAuth

3.2 Yaksho
4 Implementation

4.1 Workshop Booking

4.2 Online test master

Chapter 1

Introduction

Yaksh is an Online Test Interface for creating various courses and conducting
online programming quizzes. It supports various programming languages like :- C,
C++, Python and simple Bash. User can solve any questions by using these
languages. Yaksh uses "test cases” to test the the implementations of the students.
It also supports simple multiple choice questions and file uploads so that user can
easily submit his code. Not only you can practice the questions even you can also
conduct a programming quiz that supports various languages.

Workshop Booking is an Online Platform for proposing, booking or creating
workshops on various courses based on the availability of the instructors and the
coordinators. It has flexibilty to prepone/postpone the date of booking.

In this project we are going to work on both the sites inorder to fulfill the integrity
constraint.

Chapter 2

Area of concern

2.1 Integration

As the courses for any workshop should be created on Yaksh Portal, the workshop
booking portal must have integration with Yaksh. This will help us in handling
accounts of the users in both the platforms, and the key used here is the email id
of a user.

2.2 Automation

After an instructor accepts, the proposed/booked workshops in the workshop
booking he must create a course corresponding to that workshop on yaksh portal,
and this must be done in a generic manner based on the workshop details. the
following are the steps used by users on yaksh to create a course :

Coordinator proposes/books a workshop

Instructor accepts the workshop

Instructor logins to Yaksh

Create a course

Add lessons, quizzes, and modules to the Course created

Alter Grading system, (If necessary)

Chapter 3

Design of the project

In this project we will use an API at Yaksh to receive the request to create a work-
shop along with the post-data required to create a course and user. Also inorder to
make the request secure, we are using OAuth 2.0 toolkit, which is an open standard
for token-based authentication and authorization on the Internet. The workflow can
be illustrated in the following flow charts.

3.1 OAuth

OAUTH 2.0 flow

Workshop
Application

Authorization request with client id and client secret
Client id
Client secret

Access token with an expiry time

Workshop
Booking

Request with access token

3.2 Yaksh

Yes

|

Login as instructor

l

Create Course

r Y

Send mails
accordingly

—

Chapter 4

Implementation

4.1 Workshop Booking

e workshop course request
This method is called when the instructor accepts the course. It manages
the oauth authentication, later it sends the workshop details to the yaksh
requesting to create a course based on the data.

def create_workshop_course(user,....... , wtitle, user_position):
""" requests yaksh portal to create a course """
imail = User.objects.get(id=user.profile.user_id).email
data = [(’grant_type’,’client_credentials’)]
response=requests.post(’http://localhost:8001/0/token/’,
data= data,
auth=(settings.CLIENT_ID,settings.CLIENT_SECRET))
if (response.status_code == 200):
access_token=response. json() [’access_token’]
workshop_data = dict(
instructor_username=auth_user.username,

position=user_position,
access_token=access_token
)

yaksh_response = requests.post("http://127.0.0.1:8001/exam/workshop_co

data=workshop_data)
return yaksh_response
else:
return response

4.2 Online test master

e Workshop course

— This method is called through the API from workshop booking, it is
also decorated by protected resource(), which secures the API through a
variable access code.

— It then verifies about the user by fetching his email from workshop book-
ing, If there is no user with that email a new account with profile is
created.

— Later It checks whether the user is of moderator group, if not it makes
them a moderator and creates a course with this user.

O@csrf_exempt
@protected_resource()
def workshop_course(request):
""" authenticates the user from workshop booking """
if request.method == ’POST’:
workshop_data = request.POST.dict()
workshop_title = workshop_data[’workshop_title’]
days = int(workshop_title[workshop_title.index("day") - 1])
workshop_title = workshop_title[:workshop_title.index(’,’) - 5]

if (workshop_data[’position’] == ’instructor’ and days != 0):
user_created = False
try:
user = User.objects.get(email=...)

except User.DoesNotExist:
user_created = True
user = None
new_user = User.objects.create_user(.......)
new_profile = Profile(user=new_user, is_email_verified=True)
user = new_user
if not is_moderator(user):
group = Group.objects.get(name="moderator")
user.groups.add (group)
date_obj = datetime.strptime(workshop_data[’workshop_date’])
workshop_title_code = abbreviation(workshop_title)
college_code =abbreviation(workshop_datal[’coordinator_Institute’])
create_course(
workshop_data, days,
user=user, new_user=user_created,

return HttpResponse (200)
return Http404("Unauthorised user")
return Http404("Unauthorised request")

e Create Course

— This method creates a course based on the data received from workshop
booking application.

— It uploads the questions from the zip files such that no duplicates are
uploaded.

— The modules are designed based on the number of days described in the
title of Workshop

def create_course(workshop_data, days, user,...):
""" creates course for an user """
course = Course.objects.create(...)
quizzes are created
question_set = {
1: [’quiz_1’, ’quiz_2’, ’quiz_3’],
2: [’practice_basics’, ’practice_control_flow’, ..],
3: [’quiz_4’, ’practice_functions’,]
}
que = Question()
for day in range(days):
learning_module = LearningModule.objects.create(.......)
for index, quiz_name in enumerate(question_set[day + 1], 0):
quiz = Quiz.objects.create(........)
zip_file_path = os.path.join(.........)
files, extract_path = extract_files(zip_file_path)
added_questions = que.read_yaml(extract_path, user, files) [1]

question_paper = QuestionPaper.objects.create(quiz=quiz, ...)
g_order = [str(que.id) for que in added_questions]
question_paper.fixed_question_order = ",".join(q_order)

question_paper.save()

question_paper.fixed_questions.add(*added_questions)

question_paper.update_total_marks()

question_paper.save()

quiz_unit = LearningUnit.objects.create(order=index,)

learning_module.learning_unit.add(quiz_unit)

course.learning module.add(learning module)

send_workshop_course_mail(...........)

e This method is used to create an acronym for a string, here we use it to create
course code from the title.

def abbreviation(input):
""" returns the shorthand notation of a string """
code = []
for i in input.upper().split():
code.append (i [0])
return "".join(code)

Reference

e for Python built-in functions : https://docs.python.org/2/library /subprocess.html
e for Django OAuth toolkit : https://django-oauth-toolkit.readthedocs.io/en/latest /

e for Django REST API : http://www.django-rest-framework.org/

10

