/),

Summer Fellowship Report
On

OpenPLC

Submitted by

Ramana Ranganatham and Rohit Imandi from Bennett
University

Under the guidance of

Prof.Kannan M. Moudgalya
Chemical Engineering Department
IIT Bombay

June 29, 2018



Acknowledgment

We would like to take this opportunity to express our greatest
gratitude to our mentor, Mr. Akshay Chipkar for guiding,
supporting and helping us in every possible way. We were extremely
fortunate to have Mr. Akshay as our mentor as he provided
insightful solutions to problems faced by us thus contrbuting
immensely towards the completion of this project. We would like to
thank FOSSEE Team and IIT Bombay for giving us this opportunity
and providing a platform to exhibit our skills. We would also like to
express our deepest gratitude to Prof. Rama Komaragiri, HoD,
Dept. of Electronics and Communication Engineering, School of
Engineering and Applied Sciences, Bennett University for giving us
an opportunity to be a part of this fellowship.



Contents

1 Introduction

2 Porting LDmicro

2.1 Typedefs . . . . . . .
22 Cmakefile . . . . . . .
2.3 FreezelD library . . . . . . . . ...
24 LinuxUI library . . . . . . . .. ..
2.5 Main User Interface - GUT . . . . ... ... ... ... ... ... ..
2.6 Adjustments and Functionality of the compiler . . . . . . . .. .. ..
2.7 Drawing Window . . . . . . . . . . ...
2.8 Dialog boxes and Shortcuts . . . . . ... ... ...

3 Reference



Chapter 1

Introduction

Programmable Logic Controllers (PLC) allows controlling high
power tools which generally work at really high voltages, unlike the
microcontroller that merely works at considerably small voltage
values[1]. For example, controlling assembly lines.

Open Source PLC (or OpenPLC) has functionalities similar to that
of industrial PLC but at affordable prices. In order to achieve the
same and make a ladder logic compiler available across platforms our
task was to port an open source PLC compiler- to linux. LDmicro is
an open source ladder logic editor, simulator and compiler developed
by Jonathan Westhues for 8-bit microcontrollers. It can generate
native code for Atmel AVR and Microchip PIC16 CPUs from a
ladder diagram[2]. GNOME gtk3 library was used for the
development of GUI in C/C++.



Chapter 2

Porting LDmicro

2.1 Typedefs

This section is about all the required typedefs for porting the compiler.
This in intended to ensure uniformity throughout the source code
across platforms. Following are the typedefs :

Gtk typedefs

Windows Linux

HCRDC cairo_t *

HWID GtkWidget *
HWND GtkWindow *
HLIST GtkTreeModel *
ITLIST GtkTreelter
HAPP GtkApplication *
HTVC GtkTreeViewColumn *
GDRECT GdkRectangle
PGDRECT GDRECT
HMENU GtkWidget *
HITLIST GtkTreelter *
HICON GdkPixbuf *




Windows typedefs

Windows Linux

BOOL bool

BYTE unsigned char
WORD unsigned short
DWORD unsigned int
UINT unsigned int
SIZE_T size_t

LONG long

WCHAR wchar_t
CHAR char
LPCWSTR const wchar_t*
LPCSTR const char*
ATOM unsigned short
LPCTSTR const wchar_t*
LPCTSTR const char*
LPWSTR wchar_t*
LPSTR char*
LPTSTR wchar_t*
LPTSTR char*

PVOID void*
LPVOID void*
HMODULE void*
HHOOK void*
HANDLE void*
HINSTANCE void*
HGDIOBJ void*
UINT_PTR unsigned int
WPARAM uint64_t
LONG_PTR long
LPARAM long
LRESULT long




2.2 Cmake file

The compilation of the project is done using the help of the Make-
file, which is generated using Cmake. In order to do so, the CMake-
Lists.txt must be created for every module that needs to be compiled.

This project consists of three modules linuxUI library, freezelLD li-
brary, and LDmicro’s main program. In each of the library fold-
ers a CMakeLists.txt file is created in order to build the libraries.
The main CMakeLists.txt file responsible for generating the Make-
file is created in the source directory. Using the add_subdirectory
command provided by Cmake, the libraries are queued to be built.

The main CMakeLists.txt file also contains commands to enforce C++
11 standard, identify is the system is x64 or x86 as well as the ver-
sion of GTK installed. It also runs Perl scripts to generate necessary
header and source files required by LDmicro, and to run post build
tests to ensure LDmicros compiler is functional.



2.3 FreezeLD library

The freeze library of the original LDmicro for Windows provides func-
tions to store and retrieve window configuration data such as window
size and position from the Windows registry.

The freezelLD library of LDmicro for Linux implements a pseudo reg-
istry by creating a directory tree inside a hidden folder in the users
home folder.



2.4 LinuxUI library

The linuxUI library provides all the necessary functions, definitions
and macros that otherwise the Windows library would have provided.
This library consists of two sets of header and source files, linuxLLD
and linuxUI. The linuxLLD header and source files combined provide
the majority of the definitions and macros that are required, they also
provide all the functions that do not require GTK for its functionality
such as HeapAlloc a function that is responsible for allocating memory
that the program requires.

The linuxUI header and source files provide all the functions that im-
plement GTK such as GetSaveFileName a function that is responsible
for providing the user with a GUI to pick a file to save the program.



2.5 Main User Interface - GUI

The main window is the window which interacts with the user. It is
a GtkWidget™ that includes all the components (other widgets) like
menubar, menus, status bar, drawing window, list, etc. and their re-
spective functionalities. LDmicro user interface for Windows consisted
of various WinAPI functions which performed alot of automatic back-
ground rendering to display the main window along with its functional-
ity.

Unlike Windows, Linux doesn’t handle the most of the background
processes automatically, thus forcing us to implement every minute
detail. However, WinAPI provides functionality to define windows
classes that can be used as a template to generate windows. It also
handles all the asynchronous calls with minimum efforts.

Ensuring that the main window worked properly actually helped in
debugging functionalities of other components (or widgets) as they
had to be attached into the main window.



2.6 Adjustments and Functionality of the com-
piler

No changes were made to the core functionality of the compiler. Any
changes made were made only to support the execution of the soft-
ware in Linux. This includes definition of required functions in var-
ious files or re-arrangement of the original source code to comply
with gtk. Focus was completely on porting and proper implemen-
tation of the given functionality. We also ensured that even the func-
tion signatures and originally defined variables remained unchaned.

All the keywords and GUI functions required to run the software in
Linux were created in another folder called linuxUI.

Necessary changes were made only to the GUI part of the software.

10



2.7 Drawing Window

This was the most important part of the main window as the user
desgins the ladder logic to run the desired task. The draw window is
a GtkDrawingArea that contains a cairo context which can be used
to draw text and geometric shapes like rectangles. The ladder logic
program that is to be painted on the window is done by a function
which is asynchronously called everytime an event occurs like painting
something new, changes in the program or cursor movement. This is
like refreshing the window whenever an event occurs.

This widget is packed into the main window.

11



2.8 Dialog boxes and Shortcuts

Finally, we worked on creating various pop-dialogs and other windows
in menus like the Manual window and About window inside the
Help menu. Most of the small pop-up dialogs had to be ported care-
fully as they took inputs for the contacts of the ladder logic. This
involved checking wehther the variables were being correctly set and
displayed onto the list so that the program runs without any hin-
drance. For example, the contacts dialog pops up on double-clicking
(or hitting the Enter key) the ladder logic drawn by the user. This
dialog asks the user for the voltages to be assigned to the contacts of
the ladder drawn.

We also created keyboard shortcuts to draw the required structure on
the screen or to open another window. For example, the alphabet key
c draws a simple structure on the drawing area.

12



Chapter 3

Reference

1 https://openplc.fossee.in/
2 https://github.com/akshay-c/LDMicro-linux/tree/Akshay/ldmicro
3 https://developer.gnome.org/gtk3/stable/ GtkWidget.html

4 https://stackoverflow.com/questions/16539127 /gtkentry-change-
text-on-user-input?’rq=1

5 http://www.mit.edu/afs.new /sipb/project /gtk /gtk v1.2/tutorial /html/gtk tut
6.html

13



