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Governing Laws in CFD & HT 3

I Assuming Incompressible fluid : (CV → Control Volume)

I Mass Conservation :
“ Net amount of mass entering the CV = Net amount of mass leaving the CV
(over a period of time ∆t) ”

I Momentum Conservation :
“ Net amount increase in momentum inside a CV = Net amount of advected
momentum entering CV + Net amount of viscous and pressure impulse in
positive x/y/z direction ”

I Energy Conservation (1st Law of Thermodynamics):
“ Increase in energy within CV = Net amount of energy entering into CV +
amount energy generated within CV ”
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Energy Conservation Law : Fundamentals 4

I Before going into mathematical definition for Energy conservation, let us look
at some terminology :

I Conduction : Energy transfer through random vibration of molecules.

I Advection : Energy transfer due to bulk motion of molecules.

I Convection : Conduction + Advection
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Energy Conservation Law : Continuous Form (Conduction) 5

I Consider a Control Volume (CV) as shown in figure →
I Physical Conservation Law : Net rate of convected (conduction + advection)

thermal energy entering a CV in time-interval ∆t = Rate of increase of
enthalpy stored within CV

∂E

∂t
=
qx − qx+dx

dx
+
qy − qy+dy

dy
(1)

=⇒ ∂E

∂t
= −∂qx

∂x
− ∂qy
∂y

(2)
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Subsidiary Laws 6

I In-order to convert energy equation in terms of temperature, we need Fourier
Law :

qn = −k∂T
∂n

(3)

where k → Thermal Conductivity, n →
normal direction

I Also, Assuming total energy E = ρCpT (for incompressible solids/fluids)

∂(ρCpT )

∂t
= k

[
∂2T

∂x2
+
∂2T

∂y2

]
(4)
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Initial and Boundary Conditions 7

I Initial Conditions (IC) → The variable
values at t= 0 (starting of simulations) for
whole domain.



Initial and Boundary Conditions 8

I Initial Conditions (IC) → The variable
values at t= 0 (starting of simulations) for
whole domain.

I Boundary Conditions (BC) → condition of
variables all over boundary at all time-steps.

1. Uniform Heat Flux (qn) :
∂T

∂n
= 0 (5)

2. Insulated qn = 0

3. Convective Boundary :

−k∂T
∂n

= h(T − T∞) (6)
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Numerical Methodology : 1D Conduction 9

I Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’.

k
∂2T

∂x2
+ Q̇gen,vol = 0

=⇒
∫
V
k
∂2T

∂x2
dV +

∫
V
Q̇gen,voldV = 0

Using Gauss-divergence theorem i.e,
∫
V
∂φ
∂ndV =∫

S φn̂.dS

=⇒
∫ e

w
k
∂T

∂x
dy.dz + Q̇gen,vol∆x.1.1 = 0



Numerical Methodology : 1D Conduction 10

I Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘p’.

k

[(
∂T

∂x

)
e

−
(
∂T

∂x

)
w

]
+ Q̇gen,vol∆x = 0

=⇒ k

[
TE − TP
δxe

− TP − TW
δxw

]
+ Q̇gen,vol∆x = 0

I Using the above formulation, Linear Algebraic Equation can be obtained as
follows :

aPTP + aWTW + aETE + b = 0 (7)
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OpenFOAM Format of Equations 11

I Let us check general Laplacian solution implementation in OpenFOAM

I Go to → /opt/openfoam7/applications/solvers/basic/laplacianFoam

I Open laplacianFoam.C file

I ‘fvm’ option is used create matrix of co-efficients i.e, aP , aW , aE .... through
FV discretisation technique discussed earlier
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Solution Methodology 12

I Let us consider a tutorial example to understand solution schemes used by
OpenFOAM

I Go to → /opt/openfoam7/tutorials/basic/laplacianFoam/flange/system

I Open fvSolution & fvSchemes files
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Illustration : 2D Unsteady State Conduction 13

I Consider a 2D Unsteady state heat-conduction problem as shown :



Illustration : 2D Unsteady State Conduction 13

I Consider a 2D Unsteady state heat-conduction problem as shown :



Illustration : 2D Unsteady State Conduction 14

I How to run ?

I Download the zip file given with
video

I Extract the files

I In the terminal, type ‘blockMesh’ to
generate mesh file

I Run ‘laplacianFoam’ solver and
check the results using ‘paraFoam’
command.

I Check 0/T file to see the
implementation of various boundary
conditions.

Figure: Steady State Temperature Contour
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Thank you for listening!

Sumant Morab
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