# CFD using OpenFOAM Lecture 2: Overview of CFD Methodology













Instructor : Sumant R Morab (Ph.D Research Scholar) Co-ordinator : Prof. Janani S Murallidharan Indian Institute of Technology, Bombay



Steps Involved

Pre-Processing

PDE to LAE conversion

Solution Scheme

Post-Processing and Testing



 $\blacktriangleright\,$  The following flow-chart summarizes the steps involved in CFD Study  $\rightarrow\,$ 





 What is the area which you want to capture ? (Reasoning: Outside this area, flow features should become normal & not much changes are to observed)



Domain Creation and OpenFOAM Implementation

 What is the area which you want to capture ? (Reasoning: Outside this area, flow features should become normal & not much changes are to observed)





Domain Creation and OpenFOAM Implementation

 What is the area which you want to capture ? (Reasoning: Outside this area, flow features should become normal & not much changes are to observed) 4



## **OpenFOAM** Geometry Creation

- After installing OpenFOAM, go to tutorial problem
   Eg : openfoam directory/tutorials/incompressible/icoFoam/cavity
- ▶ General Structure : Case  $\rightarrow 0$ , constant, system
- $\blacktriangleright \text{ system} \rightarrow \mathbf{blockMeshDict}$



**OpenFOAM** Geometry Creation

- After installing OpenFOAM, go to tutorial problem
   Eg : openfoam directory/tutorials/incompressible/icoFoam/cavity
- ▶ General Structure : Case  $\rightarrow 0$ , constant, system

 $\blacktriangleright \text{ system} \rightarrow \mathbf{blockMeshDict}$ 





- ► Video Camera → colour obtained due to intensity, wavelength of light falling on each pixel of camera.
- ▶ CFD → colour graphics obtained from solving equations on each pixel (known as control volume/element)





- ► Video Camera → colour obtained due to intensity, wavelength of light falling on each pixel of camera.
- ▶ CFD → colour graphics obtained from solving equations on each pixel (known as control volume/element)





#### Mesh Generation in OpenFOAM





#### Mesh Generation in OpenFOAM



 blockMesh can be generated by first creating block using vertex points of domain and then using SimpleGrading command.



- ► After creating Control Volumes (CV) through meshing procedure, we have to solve equations to obtain values of variables.
- ▶ But what equations ? can we solve following equation directly on a computer ?

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \tag{1}$$



- ► After creating Control Volumes (CV) through meshing procedure, we have to solve equations to obtain values of variables.
- ▶ But what equations ? can we solve following equation directly on a computer ?

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \tag{1}$$

• Can we solve this ? 3x + 2y = 5; 6x + 10y = 15

$$\begin{bmatrix} 3 & 2\\ 6 & 10 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 5\\ 15 \end{bmatrix}$$
(2)

Objective : Convert Partial Differential Equations (PDE) to Linear Algebraic Equations (LAE).

Consider a one-dimensional domain with 2 internal cells as shown below ; it is intended to solve  $\frac{du}{dx} = 3$ 



1. Finite Difference Method : Using Second order central difference scheme

$$\frac{u_E - u_W}{2\Delta x} = 3\tag{3}$$



2. Finite Volume Method : Integrate the PDE over whole C.V as follows :

$$\frac{1}{\Delta V} \iiint_V \frac{du}{dx} dV = \frac{1}{\Delta V} \iiint_V 3dV \tag{4}$$

Apply Gauss-Divergence Theorem to obtain:

$$\int_{CS} \int V dA = 3\Delta V \tag{5}$$

$$(u_e - u_w).1.1 = 3\Delta x.1.1 \tag{6}$$

$$\frac{(u_E - u_W)}{2} = 3\Delta x \tag{7}$$



3. Finite Element Method : Divide the domain into small elements (like C.V) and find a solution such that

$$\iiint R.dV = 0 \tag{8}$$

where

$$R = \frac{du_{approximate}}{dx} - 3 \tag{9}$$

 $W \to W eight$  Function. Find LAE by interpolating 'u' with vertex points of cell



▶ Once we get some equations, how to solve them ?

$$\begin{bmatrix} 3 & 2\\ 6 & 10 \end{bmatrix} \begin{bmatrix} T_1\\ T_2 \end{bmatrix} = \begin{bmatrix} 5\\ 15 \end{bmatrix}$$
(10)

 $\blacktriangleright$  One Approach : **Direct Method** 

$$\begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 6 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 15 \end{bmatrix}$$
(11)

 Second Approach : Iterative/Indirect Approach Guess an initial value, update it iteratively till difference between iterations is close to zero.



Comparison of Methods and OpenFOAM Implementation

| Direct Method                         | Indirect Method                         |
|---------------------------------------|-----------------------------------------|
| Gives exact results of LAE            | Approximate solution of LAE is obtained |
| Computationally expensive for         | Approximate solutions can               |
| large number of variables             | be obtained with less time              |
| Method is unstable                    | Solution obtained in all feasible cases |
| Eg : Direct Inverse, LU decomposition | Eg : Gauss Seidel, Jacobi etc.          |

**OpenFOAM Implementation** : Indirect Method using Smooth Gauss Seidel, Conjugate Gradient.





- ▶ Now, we are able to calculate Flow variables like velocity, pressure and/or temperature. What next ?
- ▶ To understand the effects, usually some scientific/Engineering relevant parameters need to be considered.
- ► For example : consider flow over aircraft, it is important to know lift force so as decide load that can be carried on aircraft.

$$F_L = \iint_{CS} P(\hat{n}.dA) \tag{12}$$

▶ In case of flow inside tube, Wall Shear Stress (WSS) needs to be calculated to check the probability of wear and tear of tube walls

$$WSS = -\mu \frac{\partial u_{tangential}}{\partial n}$$



## OpenFOAM post-processing - Monitors

▶ General Structure : Case  $\rightarrow 0$ , constant, system

▶ system  $\rightarrow$  controlDict



### OpenFOAM post-processing - Monitors

▶ General Structure : Case  $\rightarrow 0$ , constant, system

#### ▶ system $\rightarrow$ controlDict

```
functions
   forceCoeffs
   type
                forceCoeffs:
   libs ( "libforces.so" ):
   writeControl timeStep;
   writeInterval 1;
                ( "cylwall" );
   patches
   .
nName
                D:
   UName
                Ú:
                rhoInf: // Indicates incompressible
   rho
   log
                true:
   rhoInf
                1:
                         // Redundant for incompressible
   liftDir
                (0 1 0): // Lift Direction
   dragDir
                (1 0 0): // Drag Direction
                (1.1 0.75 0.05): // Axle midpoint on around
   CofŘ
                (0 0 1);
   nitchAxis
   magUInf
                        // Velocity
               0.2
                        // Wheelbase length
   lRef
   Aref
               0.02
                        // Cross section Area
```



## OpenFOAM post-processing - Monitors

▶ General Structure : Case  $\rightarrow 0$ , constant, system

#### ▶ system $\rightarrow$ controlDict

```
functions
    forceCoeffs
    type
                forceCoeffs:
    libs ( "libforces.so" ):
    writeControl timeStep;
    writeInterval 1:
    patches
                ( "cylwall" );
    .
nName
                D:
    INamo
                Ù:
                rhoInf; // Indicates incompressible
    rho
    loa
                true:
                          // Redundant for incompressible
    rhoInf
    liftDir
                (0 1 0): // Lift Direction
    dragDir
                (1 0 0): // Drag Direction
                (1.1 0.75 0.05): // Axle midpoint on around
    CofŘ
    nitchAxis
                (0 \ 0 \ 1):
    magUInf
                         // Velocity
                         // Wheelbase length
    lRef
    Aref
                         // Cross section Area
```

▶ On the fly calculation of WSS  $\rightarrow$  after calculations, enter the following command  $\rightarrow$  solverName -postProcess -func wallShearStress





- ▶ When a new problem is attempted, it's important to check results for simplified geometry with those available in literature.
- ► Two Approaches :
  - 1. **Experimental comparison** : If previous literature contains experimental results, direct comparison can be performed or the experiments can be performed on own
  - 2. Other Numerical work : Comparison can be performed published numerical literature (especially with three-dimensional numerical simulations)
- ▶ Summary : Following are steps involved in CFD study Geometry (G) → Discretization(D) → Solution Scheme(S) → Post-processing (P) → Testing (T)



- Sharma, A. (2016). Introduction to computational fluid dynamics: development, application and analysis. John Wiley & Sons.
- Hiester, H. R., Piggott, M. D., Farrell, P. E., & Allison, P. A. (2014). Assessment of spurious mixing in adaptive mesh simulations of the two-dimensional lock-exchange. Ocean Modelling, 73, 30-44.
- 3. https://www.openfoam.com/





Atul Sharma

WILEY

Thank you for listening!

Sumant Morab

